Line data Source code
1 :
2 : /* Float object implementation */
3 :
4 : /* XXX There should be overflow checks here, but it's hard to check
5 : for any kind of float exception without losing portability. */
6 :
7 : #include "Python.h"
8 : #include "structseq.h"
9 :
10 : #include <ctype.h>
11 : #include <float.h>
12 :
13 : #undef MAX
14 : #undef MIN
15 : #define MAX(x, y) ((x) < (y) ? (y) : (x))
16 : #define MIN(x, y) ((x) < (y) ? (x) : (y))
17 :
18 : #ifdef _OSF_SOURCE
19 : /* OSF1 5.1 doesn't make this available with XOPEN_SOURCE_EXTENDED defined */
20 : extern int finite(double);
21 : #endif
22 :
23 : /* Special free list -- see comments for same code in intobject.c. */
24 : #define BLOCK_SIZE 1000 /* 1K less typical malloc overhead */
25 : #define BHEAD_SIZE 8 /* Enough for a 64-bit pointer */
26 : #define N_FLOATOBJECTS ((BLOCK_SIZE - BHEAD_SIZE) / sizeof(PyFloatObject))
27 :
28 : struct _floatblock {
29 : struct _floatblock *next;
30 : PyFloatObject objects[N_FLOATOBJECTS];
31 : };
32 :
33 : typedef struct _floatblock PyFloatBlock;
34 :
35 : static PyFloatBlock *block_list = NULL;
36 : static PyFloatObject *free_list = NULL;
37 :
38 : static PyFloatObject *
39 9 : fill_free_list(void)
40 : {
41 : PyFloatObject *p, *q;
42 : /* XXX Float blocks escape the object heap. Use PyObject_MALLOC ??? */
43 9 : p = (PyFloatObject *) PyMem_MALLOC(sizeof(PyFloatBlock));
44 9 : if (p == NULL)
45 0 : return (PyFloatObject *) PyErr_NoMemory();
46 9 : ((PyFloatBlock *)p)->next = block_list;
47 9 : block_list = (PyFloatBlock *)p;
48 9 : p = &((PyFloatBlock *)p)->objects[0];
49 9 : q = p + N_FLOATOBJECTS;
50 378 : while (--q > p)
51 360 : Py_TYPE(q) = (struct _typeobject *)(q-1);
52 9 : Py_TYPE(q) = NULL;
53 9 : return p + N_FLOATOBJECTS - 1;
54 : }
55 :
56 : double
57 0 : PyFloat_GetMax(void)
58 : {
59 0 : return DBL_MAX;
60 : }
61 :
62 : double
63 0 : PyFloat_GetMin(void)
64 : {
65 0 : return DBL_MIN;
66 : }
67 :
68 : static PyTypeObject FloatInfoType = {0, 0, 0, 0, 0, 0};
69 :
70 : PyDoc_STRVAR(floatinfo__doc__,
71 : "sys.float_info\n\
72 : \n\
73 : A structseq holding information about the float type. It contains low level\n\
74 : information about the precision and internal representation. Please study\n\
75 : your system's :file:`float.h` for more information.");
76 :
77 : static PyStructSequence_Field floatinfo_fields[] = {
78 : {"max", "DBL_MAX -- maximum representable finite float"},
79 : {"max_exp", "DBL_MAX_EXP -- maximum int e such that radix**(e-1) "
80 : "is representable"},
81 : {"max_10_exp", "DBL_MAX_10_EXP -- maximum int e such that 10**e "
82 : "is representable"},
83 : {"min", "DBL_MIN -- Minimum positive normalizer float"},
84 : {"min_exp", "DBL_MIN_EXP -- minimum int e such that radix**(e-1) "
85 : "is a normalized float"},
86 : {"min_10_exp", "DBL_MIN_10_EXP -- minimum int e such that 10**e is "
87 : "a normalized"},
88 : {"dig", "DBL_DIG -- digits"},
89 : {"mant_dig", "DBL_MANT_DIG -- mantissa digits"},
90 : {"epsilon", "DBL_EPSILON -- Difference between 1 and the next "
91 : "representable float"},
92 : {"radix", "FLT_RADIX -- radix of exponent"},
93 : {"rounds", "FLT_ROUNDS -- addition rounds"},
94 : {0}
95 : };
96 :
97 : static PyStructSequence_Desc floatinfo_desc = {
98 : "sys.float_info", /* name */
99 : floatinfo__doc__, /* doc */
100 : floatinfo_fields, /* fields */
101 : 11
102 : };
103 :
104 : PyObject *
105 3 : PyFloat_GetInfo(void)
106 : {
107 : PyObject* floatinfo;
108 3 : int pos = 0;
109 :
110 3 : floatinfo = PyStructSequence_New(&FloatInfoType);
111 3 : if (floatinfo == NULL) {
112 0 : return NULL;
113 : }
114 :
115 : #define SetIntFlag(flag) \
116 : PyStructSequence_SET_ITEM(floatinfo, pos++, PyInt_FromLong(flag))
117 : #define SetDblFlag(flag) \
118 : PyStructSequence_SET_ITEM(floatinfo, pos++, PyFloat_FromDouble(flag))
119 :
120 3 : SetDblFlag(DBL_MAX);
121 3 : SetIntFlag(DBL_MAX_EXP);
122 3 : SetIntFlag(DBL_MAX_10_EXP);
123 3 : SetDblFlag(DBL_MIN);
124 3 : SetIntFlag(DBL_MIN_EXP);
125 3 : SetIntFlag(DBL_MIN_10_EXP);
126 3 : SetIntFlag(DBL_DIG);
127 3 : SetIntFlag(DBL_MANT_DIG);
128 3 : SetDblFlag(DBL_EPSILON);
129 3 : SetIntFlag(FLT_RADIX);
130 3 : SetIntFlag(FLT_ROUNDS);
131 : #undef SetIntFlag
132 : #undef SetDblFlag
133 :
134 3 : if (PyErr_Occurred()) {
135 0 : Py_CLEAR(floatinfo);
136 0 : return NULL;
137 : }
138 3 : return floatinfo;
139 : }
140 :
141 : PyObject *
142 297 : PyFloat_FromDouble(double fval)
143 : {
144 : register PyFloatObject *op;
145 297 : if (free_list == NULL) {
146 9 : if ((free_list = fill_free_list()) == NULL)
147 0 : return NULL;
148 : }
149 : /* Inline PyObject_New */
150 297 : op = free_list;
151 297 : free_list = (PyFloatObject *)Py_TYPE(op);
152 297 : (void)PyObject_INIT(op, &PyFloat_Type);
153 297 : op->ob_fval = fval;
154 297 : return (PyObject *) op;
155 : }
156 :
157 : /**************************************************************************
158 : RED_FLAG 22-Sep-2000 tim
159 : PyFloat_FromString's pend argument is braindead. Prior to this RED_FLAG,
160 :
161 : 1. If v was a regular string, *pend was set to point to its terminating
162 : null byte. That's useless (the caller can find that without any
163 : help from this function!).
164 :
165 : 2. If v was a Unicode string, or an object convertible to a character
166 : buffer, *pend was set to point into stack trash (the auto temp
167 : vector holding the character buffer). That was downright dangerous.
168 :
169 : Since we can't change the interface of a public API function, pend is
170 : still supported but now *officially* useless: if pend is not NULL,
171 : *pend is set to NULL.
172 : **************************************************************************/
173 : PyObject *
174 3 : PyFloat_FromString(PyObject *v, char **pend)
175 : {
176 : const char *s, *last, *end;
177 : double x;
178 : char buffer[256]; /* for errors */
179 : #ifdef Py_USING_UNICODE
180 3 : char *s_buffer = NULL;
181 : #endif
182 : Py_ssize_t len;
183 3 : PyObject *str = NULL;
184 3 : PyObject *result = NULL;
185 :
186 3 : if (pend)
187 0 : *pend = NULL;
188 3 : if (PyString_Check(v)) {
189 3 : s = PyString_AS_STRING(v);
190 3 : len = PyString_GET_SIZE(v);
191 : }
192 : #ifdef Py_USING_UNICODE
193 0 : else if (PyUnicode_Check(v)) {
194 0 : s_buffer = (char *)PyMem_MALLOC(PyUnicode_GET_SIZE(v)+1);
195 0 : if (s_buffer == NULL)
196 0 : return PyErr_NoMemory();
197 0 : if (PyUnicode_EncodeDecimal(PyUnicode_AS_UNICODE(v),
198 : PyUnicode_GET_SIZE(v),
199 : s_buffer,
200 : NULL))
201 0 : goto error;
202 0 : s = s_buffer;
203 0 : len = strlen(s);
204 : }
205 : #endif
206 0 : else if (!PyObject_AsCharBuffer(v, &s, &len)) {
207 : /* Copy to NUL-terminated buffer. */
208 0 : str = PyString_FromStringAndSize(s, len);
209 0 : if (str == NULL)
210 0 : return NULL;
211 0 : s = PyString_AS_STRING(str);
212 : }
213 : else {
214 0 : PyErr_SetString(PyExc_TypeError,
215 : "float() argument must be a string or a number");
216 0 : return NULL;
217 : }
218 3 : last = s + len;
219 :
220 6 : while (Py_ISSPACE(*s))
221 0 : s++;
222 : /* We don't care about overflow or underflow. If the platform
223 : * supports them, infinities and signed zeroes (on underflow) are
224 : * fine. */
225 3 : x = PyOS_string_to_double(s, (char **)&end, NULL);
226 3 : if (x == -1.0 && PyErr_Occurred())
227 0 : goto error;
228 6 : while (Py_ISSPACE(*end))
229 0 : end++;
230 3 : if (end == last)
231 3 : result = PyFloat_FromDouble(x);
232 : else {
233 0 : PyOS_snprintf(buffer, sizeof(buffer),
234 : "invalid literal for float(): %.200s", s);
235 0 : PyErr_SetString(PyExc_ValueError, buffer);
236 0 : result = NULL;
237 : }
238 :
239 : error:
240 : #ifdef Py_USING_UNICODE
241 3 : if (s_buffer)
242 0 : PyMem_FREE(s_buffer);
243 : #endif
244 3 : Py_XDECREF(str);
245 3 : return result;
246 : }
247 :
248 : static void
249 210 : float_dealloc(PyFloatObject *op)
250 : {
251 210 : if (PyFloat_CheckExact(op)) {
252 210 : Py_TYPE(op) = (struct _typeobject *)free_list;
253 210 : free_list = op;
254 : }
255 : else
256 0 : Py_TYPE(op)->tp_free((PyObject *)op);
257 210 : }
258 :
259 : double
260 13 : PyFloat_AsDouble(PyObject *op)
261 : {
262 : PyNumberMethods *nb;
263 : PyFloatObject *fo;
264 : double val;
265 :
266 13 : if (op && PyFloat_Check(op))
267 13 : return PyFloat_AS_DOUBLE((PyFloatObject*) op);
268 :
269 0 : if (op == NULL) {
270 0 : PyErr_BadArgument();
271 0 : return -1;
272 : }
273 :
274 0 : if ((nb = Py_TYPE(op)->tp_as_number) == NULL || nb->nb_float == NULL) {
275 0 : PyErr_SetString(PyExc_TypeError, "a float is required");
276 0 : return -1;
277 : }
278 :
279 0 : fo = (PyFloatObject*) (*nb->nb_float) (op);
280 0 : if (fo == NULL)
281 0 : return -1;
282 0 : if (!PyFloat_Check(fo)) {
283 0 : Py_DECREF(fo);
284 0 : PyErr_SetString(PyExc_TypeError,
285 : "nb_float should return float object");
286 0 : return -1;
287 : }
288 :
289 0 : val = PyFloat_AS_DOUBLE(fo);
290 0 : Py_DECREF(fo);
291 :
292 0 : return val;
293 : }
294 :
295 : /* Methods */
296 :
297 : /* Macro and helper that convert PyObject obj to a C double and store
298 : the value in dbl; this replaces the functionality of the coercion
299 : slot function. If conversion to double raises an exception, obj is
300 : set to NULL, and the function invoking this macro returns NULL. If
301 : obj is not of float, int or long type, Py_NotImplemented is incref'ed,
302 : stored in obj, and returned from the function invoking this macro.
303 : */
304 : #define CONVERT_TO_DOUBLE(obj, dbl) \
305 : if (PyFloat_Check(obj)) \
306 : dbl = PyFloat_AS_DOUBLE(obj); \
307 : else if (convert_to_double(&(obj), &(dbl)) < 0) \
308 : return obj;
309 :
310 : static int
311 9 : convert_to_double(PyObject **v, double *dbl)
312 : {
313 9 : register PyObject *obj = *v;
314 :
315 9 : if (PyInt_Check(obj)) {
316 9 : *dbl = (double)PyInt_AS_LONG(obj);
317 : }
318 0 : else if (PyLong_Check(obj)) {
319 0 : *dbl = PyLong_AsDouble(obj);
320 0 : if (*dbl == -1.0 && PyErr_Occurred()) {
321 0 : *v = NULL;
322 0 : return -1;
323 : }
324 : }
325 : else {
326 0 : Py_INCREF(Py_NotImplemented);
327 0 : *v = Py_NotImplemented;
328 0 : return -1;
329 : }
330 9 : return 0;
331 : }
332 :
333 : /* XXX PyFloat_AsString and PyFloat_AsReprString are deprecated:
334 : XXX they pass a char buffer without passing a length.
335 : */
336 : void
337 0 : PyFloat_AsString(char *buf, PyFloatObject *v)
338 : {
339 0 : char *tmp = PyOS_double_to_string(v->ob_fval, 'g',
340 : PyFloat_STR_PRECISION,
341 : Py_DTSF_ADD_DOT_0, NULL);
342 0 : strcpy(buf, tmp);
343 0 : PyMem_Free(tmp);
344 0 : }
345 :
346 : void
347 0 : PyFloat_AsReprString(char *buf, PyFloatObject *v)
348 : {
349 0 : char * tmp = PyOS_double_to_string(v->ob_fval, 'r', 0,
350 : Py_DTSF_ADD_DOT_0, NULL);
351 0 : strcpy(buf, tmp);
352 0 : PyMem_Free(tmp);
353 0 : }
354 :
355 : /* ARGSUSED */
356 : static int
357 0 : float_print(PyFloatObject *v, FILE *fp, int flags)
358 : {
359 : char *buf;
360 0 : if (flags & Py_PRINT_RAW)
361 0 : buf = PyOS_double_to_string(v->ob_fval,
362 : 'g', PyFloat_STR_PRECISION,
363 : Py_DTSF_ADD_DOT_0, NULL);
364 : else
365 0 : buf = PyOS_double_to_string(v->ob_fval,
366 : 'r', 0, Py_DTSF_ADD_DOT_0, NULL);
367 : Py_BEGIN_ALLOW_THREADS
368 0 : fputs(buf, fp);
369 : Py_END_ALLOW_THREADS
370 0 : PyMem_Free(buf);
371 0 : return 0;
372 : }
373 :
374 : static PyObject *
375 0 : float_str_or_repr(PyFloatObject *v, int precision, char format_code)
376 : {
377 : PyObject *result;
378 0 : char *buf = PyOS_double_to_string(PyFloat_AS_DOUBLE(v),
379 : format_code, precision,
380 : Py_DTSF_ADD_DOT_0,
381 : NULL);
382 0 : if (!buf)
383 0 : return PyErr_NoMemory();
384 0 : result = PyString_FromString(buf);
385 0 : PyMem_Free(buf);
386 0 : return result;
387 : }
388 :
389 : static PyObject *
390 0 : float_repr(PyFloatObject *v)
391 : {
392 0 : return float_str_or_repr(v, 0, 'r');
393 : }
394 :
395 : static PyObject *
396 0 : float_str(PyFloatObject *v)
397 : {
398 0 : return float_str_or_repr(v, PyFloat_STR_PRECISION, 'g');
399 : }
400 :
401 : /* Comparison is pretty much a nightmare. When comparing float to float,
402 : * we do it as straightforwardly (and long-windedly) as conceivable, so
403 : * that, e.g., Python x == y delivers the same result as the platform
404 : * C x == y when x and/or y is a NaN.
405 : * When mixing float with an integer type, there's no good *uniform* approach.
406 : * Converting the double to an integer obviously doesn't work, since we
407 : * may lose info from fractional bits. Converting the integer to a double
408 : * also has two failure modes: (1) a long int may trigger overflow (too
409 : * large to fit in the dynamic range of a C double); (2) even a C long may have
410 : * more bits than fit in a C double (e.g., on a 64-bit box long may have
411 : * 63 bits of precision, but a C double probably has only 53), and then
412 : * we can falsely claim equality when low-order integer bits are lost by
413 : * coercion to double. So this part is painful too.
414 : */
415 :
416 : static PyObject*
417 0 : float_richcompare(PyObject *v, PyObject *w, int op)
418 : {
419 : double i, j;
420 0 : int r = 0;
421 :
422 : assert(PyFloat_Check(v));
423 0 : i = PyFloat_AS_DOUBLE(v);
424 :
425 : /* Switch on the type of w. Set i and j to doubles to be compared,
426 : * and op to the richcomp to use.
427 : */
428 0 : if (PyFloat_Check(w))
429 0 : j = PyFloat_AS_DOUBLE(w);
430 :
431 0 : else if (!Py_IS_FINITE(i)) {
432 0 : if (PyInt_Check(w) || PyLong_Check(w))
433 : /* If i is an infinity, its magnitude exceeds any
434 : * finite integer, so it doesn't matter which int we
435 : * compare i with. If i is a NaN, similarly.
436 : */
437 0 : j = 0.0;
438 : else
439 : goto Unimplemented;
440 : }
441 :
442 0 : else if (PyInt_Check(w)) {
443 0 : long jj = PyInt_AS_LONG(w);
444 : /* In the worst realistic case I can imagine, C double is a
445 : * Cray single with 48 bits of precision, and long has 64
446 : * bits.
447 : */
448 : #if SIZEOF_LONG > 6
449 0 : unsigned long abs = (unsigned long)(jj < 0 ? -jj : jj);
450 0 : if (abs >> 48) {
451 : /* Needs more than 48 bits. Make it take the
452 : * PyLong path.
453 : */
454 : PyObject *result;
455 0 : PyObject *ww = PyLong_FromLong(jj);
456 :
457 0 : if (ww == NULL)
458 0 : return NULL;
459 0 : result = float_richcompare(v, ww, op);
460 0 : Py_DECREF(ww);
461 0 : return result;
462 : }
463 : #endif
464 0 : j = (double)jj;
465 : assert((long)j == jj);
466 : }
467 :
468 0 : else if (PyLong_Check(w)) {
469 0 : int vsign = i == 0.0 ? 0 : i < 0.0 ? -1 : 1;
470 0 : int wsign = _PyLong_Sign(w);
471 : size_t nbits;
472 : int exponent;
473 :
474 0 : if (vsign != wsign) {
475 : /* Magnitudes are irrelevant -- the signs alone
476 : * determine the outcome.
477 : */
478 0 : i = (double)vsign;
479 0 : j = (double)wsign;
480 0 : goto Compare;
481 : }
482 : /* The signs are the same. */
483 : /* Convert w to a double if it fits. In particular, 0 fits. */
484 0 : nbits = _PyLong_NumBits(w);
485 0 : if (nbits == (size_t)-1 && PyErr_Occurred()) {
486 : /* This long is so large that size_t isn't big enough
487 : * to hold the # of bits. Replace with little doubles
488 : * that give the same outcome -- w is so large that
489 : * its magnitude must exceed the magnitude of any
490 : * finite float.
491 : */
492 0 : PyErr_Clear();
493 0 : i = (double)vsign;
494 : assert(wsign != 0);
495 0 : j = wsign * 2.0;
496 0 : goto Compare;
497 : }
498 0 : if (nbits <= 48) {
499 0 : j = PyLong_AsDouble(w);
500 : /* It's impossible that <= 48 bits overflowed. */
501 : assert(j != -1.0 || ! PyErr_Occurred());
502 0 : goto Compare;
503 : }
504 : assert(wsign != 0); /* else nbits was 0 */
505 : assert(vsign != 0); /* if vsign were 0, then since wsign is
506 : * not 0, we would have taken the
507 : * vsign != wsign branch at the start */
508 : /* We want to work with non-negative numbers. */
509 0 : if (vsign < 0) {
510 : /* "Multiply both sides" by -1; this also swaps the
511 : * comparator.
512 : */
513 0 : i = -i;
514 0 : op = _Py_SwappedOp[op];
515 : }
516 : assert(i > 0.0);
517 0 : (void) frexp(i, &exponent);
518 : /* exponent is the # of bits in v before the radix point;
519 : * we know that nbits (the # of bits in w) > 48 at this point
520 : */
521 0 : if (exponent < 0 || (size_t)exponent < nbits) {
522 0 : i = 1.0;
523 0 : j = 2.0;
524 0 : goto Compare;
525 : }
526 0 : if ((size_t)exponent > nbits) {
527 0 : i = 2.0;
528 0 : j = 1.0;
529 0 : goto Compare;
530 : }
531 : /* v and w have the same number of bits before the radix
532 : * point. Construct two longs that have the same comparison
533 : * outcome.
534 : */
535 : {
536 : double fracpart;
537 : double intpart;
538 0 : PyObject *result = NULL;
539 0 : PyObject *one = NULL;
540 0 : PyObject *vv = NULL;
541 0 : PyObject *ww = w;
542 :
543 0 : if (wsign < 0) {
544 0 : ww = PyNumber_Negative(w);
545 0 : if (ww == NULL)
546 0 : goto Error;
547 : }
548 : else
549 0 : Py_INCREF(ww);
550 :
551 0 : fracpart = modf(i, &intpart);
552 0 : vv = PyLong_FromDouble(intpart);
553 0 : if (vv == NULL)
554 0 : goto Error;
555 :
556 0 : if (fracpart != 0.0) {
557 : /* Shift left, and or a 1 bit into vv
558 : * to represent the lost fraction.
559 : */
560 : PyObject *temp;
561 :
562 0 : one = PyInt_FromLong(1);
563 0 : if (one == NULL)
564 0 : goto Error;
565 :
566 0 : temp = PyNumber_Lshift(ww, one);
567 0 : if (temp == NULL)
568 0 : goto Error;
569 0 : Py_DECREF(ww);
570 0 : ww = temp;
571 :
572 0 : temp = PyNumber_Lshift(vv, one);
573 0 : if (temp == NULL)
574 0 : goto Error;
575 0 : Py_DECREF(vv);
576 0 : vv = temp;
577 :
578 0 : temp = PyNumber_Or(vv, one);
579 0 : if (temp == NULL)
580 0 : goto Error;
581 0 : Py_DECREF(vv);
582 0 : vv = temp;
583 : }
584 :
585 0 : r = PyObject_RichCompareBool(vv, ww, op);
586 0 : if (r < 0)
587 0 : goto Error;
588 0 : result = PyBool_FromLong(r);
589 : Error:
590 0 : Py_XDECREF(vv);
591 0 : Py_XDECREF(ww);
592 0 : Py_XDECREF(one);
593 0 : return result;
594 : }
595 : } /* else if (PyLong_Check(w)) */
596 :
597 : else /* w isn't float, int, or long */
598 0 : goto Unimplemented;
599 :
600 : Compare:
601 : PyFPE_START_PROTECT("richcompare", return NULL)
602 0 : switch (op) {
603 : case Py_EQ:
604 0 : r = i == j;
605 0 : break;
606 : case Py_NE:
607 0 : r = i != j;
608 0 : break;
609 : case Py_LE:
610 0 : r = i <= j;
611 0 : break;
612 : case Py_GE:
613 0 : r = i >= j;
614 0 : break;
615 : case Py_LT:
616 0 : r = i < j;
617 0 : break;
618 : case Py_GT:
619 0 : r = i > j;
620 0 : break;
621 : }
622 : PyFPE_END_PROTECT(r)
623 0 : return PyBool_FromLong(r);
624 :
625 : Unimplemented:
626 0 : Py_INCREF(Py_NotImplemented);
627 0 : return Py_NotImplemented;
628 : }
629 :
630 : static long
631 4 : float_hash(PyFloatObject *v)
632 : {
633 4 : return _Py_HashDouble(v->ob_fval);
634 : }
635 :
636 : static PyObject *
637 3 : float_add(PyObject *v, PyObject *w)
638 : {
639 : double a,b;
640 3 : CONVERT_TO_DOUBLE(v, a);
641 3 : CONVERT_TO_DOUBLE(w, b);
642 : PyFPE_START_PROTECT("add", return 0)
643 3 : a = a + b;
644 : PyFPE_END_PROTECT(a)
645 3 : return PyFloat_FromDouble(a);
646 : }
647 :
648 : static PyObject *
649 0 : float_sub(PyObject *v, PyObject *w)
650 : {
651 : double a,b;
652 0 : CONVERT_TO_DOUBLE(v, a);
653 0 : CONVERT_TO_DOUBLE(w, b);
654 : PyFPE_START_PROTECT("subtract", return 0)
655 0 : a = a - b;
656 : PyFPE_END_PROTECT(a)
657 0 : return PyFloat_FromDouble(a);
658 : }
659 :
660 : static PyObject *
661 6 : float_mul(PyObject *v, PyObject *w)
662 : {
663 : double a,b;
664 6 : CONVERT_TO_DOUBLE(v, a);
665 6 : CONVERT_TO_DOUBLE(w, b);
666 : PyFPE_START_PROTECT("multiply", return 0)
667 6 : a = a * b;
668 : PyFPE_END_PROTECT(a)
669 6 : return PyFloat_FromDouble(a);
670 : }
671 :
672 : static PyObject *
673 3 : float_div(PyObject *v, PyObject *w)
674 : {
675 : double a,b;
676 3 : CONVERT_TO_DOUBLE(v, a);
677 3 : CONVERT_TO_DOUBLE(w, b);
678 : #ifdef Py_NAN
679 3 : if (b == 0.0) {
680 0 : PyErr_SetString(PyExc_ZeroDivisionError,
681 : "float division by zero");
682 0 : return NULL;
683 : }
684 : #endif
685 : PyFPE_START_PROTECT("divide", return 0)
686 3 : a = a / b;
687 : PyFPE_END_PROTECT(a)
688 3 : return PyFloat_FromDouble(a);
689 : }
690 :
691 : static PyObject *
692 0 : float_classic_div(PyObject *v, PyObject *w)
693 : {
694 : double a,b;
695 0 : CONVERT_TO_DOUBLE(v, a);
696 0 : CONVERT_TO_DOUBLE(w, b);
697 0 : if (Py_DivisionWarningFlag >= 2 &&
698 0 : PyErr_Warn(PyExc_DeprecationWarning, "classic float division") < 0)
699 0 : return NULL;
700 : #ifdef Py_NAN
701 0 : if (b == 0.0) {
702 0 : PyErr_SetString(PyExc_ZeroDivisionError,
703 : "float division by zero");
704 0 : return NULL;
705 : }
706 : #endif
707 : PyFPE_START_PROTECT("divide", return 0)
708 0 : a = a / b;
709 : PyFPE_END_PROTECT(a)
710 0 : return PyFloat_FromDouble(a);
711 : }
712 :
713 : static PyObject *
714 0 : float_rem(PyObject *v, PyObject *w)
715 : {
716 : double vx, wx;
717 : double mod;
718 0 : CONVERT_TO_DOUBLE(v, vx);
719 0 : CONVERT_TO_DOUBLE(w, wx);
720 : #ifdef Py_NAN
721 0 : if (wx == 0.0) {
722 0 : PyErr_SetString(PyExc_ZeroDivisionError,
723 : "float modulo");
724 0 : return NULL;
725 : }
726 : #endif
727 : PyFPE_START_PROTECT("modulo", return 0)
728 0 : mod = fmod(vx, wx);
729 0 : if (mod) {
730 : /* ensure the remainder has the same sign as the denominator */
731 0 : if ((wx < 0) != (mod < 0)) {
732 0 : mod += wx;
733 : }
734 : }
735 : else {
736 : /* the remainder is zero, and in the presence of signed zeroes
737 : fmod returns different results across platforms; ensure
738 : it has the same sign as the denominator; we'd like to do
739 : "mod = wx * 0.0", but that may get optimized away */
740 0 : mod *= mod; /* hide "mod = +0" from optimizer */
741 0 : if (wx < 0.0)
742 0 : mod = -mod;
743 : }
744 : PyFPE_END_PROTECT(mod)
745 0 : return PyFloat_FromDouble(mod);
746 : }
747 :
748 : static PyObject *
749 0 : float_divmod(PyObject *v, PyObject *w)
750 : {
751 : double vx, wx;
752 : double div, mod, floordiv;
753 0 : CONVERT_TO_DOUBLE(v, vx);
754 0 : CONVERT_TO_DOUBLE(w, wx);
755 0 : if (wx == 0.0) {
756 0 : PyErr_SetString(PyExc_ZeroDivisionError, "float divmod()");
757 0 : return NULL;
758 : }
759 : PyFPE_START_PROTECT("divmod", return 0)
760 0 : mod = fmod(vx, wx);
761 : /* fmod is typically exact, so vx-mod is *mathematically* an
762 : exact multiple of wx. But this is fp arithmetic, and fp
763 : vx - mod is an approximation; the result is that div may
764 : not be an exact integral value after the division, although
765 : it will always be very close to one.
766 : */
767 0 : div = (vx - mod) / wx;
768 0 : if (mod) {
769 : /* ensure the remainder has the same sign as the denominator */
770 0 : if ((wx < 0) != (mod < 0)) {
771 0 : mod += wx;
772 0 : div -= 1.0;
773 : }
774 : }
775 : else {
776 : /* the remainder is zero, and in the presence of signed zeroes
777 : fmod returns different results across platforms; ensure
778 : it has the same sign as the denominator; we'd like to do
779 : "mod = wx * 0.0", but that may get optimized away */
780 0 : mod *= mod; /* hide "mod = +0" from optimizer */
781 0 : if (wx < 0.0)
782 0 : mod = -mod;
783 : }
784 : /* snap quotient to nearest integral value */
785 0 : if (div) {
786 0 : floordiv = floor(div);
787 0 : if (div - floordiv > 0.5)
788 0 : floordiv += 1.0;
789 : }
790 : else {
791 : /* div is zero - get the same sign as the true quotient */
792 0 : div *= div; /* hide "div = +0" from optimizers */
793 0 : floordiv = div * vx / wx; /* zero w/ sign of vx/wx */
794 : }
795 : PyFPE_END_PROTECT(floordiv)
796 0 : return Py_BuildValue("(dd)", floordiv, mod);
797 : }
798 :
799 : static PyObject *
800 0 : float_floor_div(PyObject *v, PyObject *w)
801 : {
802 : PyObject *t, *r;
803 :
804 0 : t = float_divmod(v, w);
805 0 : if (t == NULL || t == Py_NotImplemented)
806 0 : return t;
807 : assert(PyTuple_CheckExact(t));
808 0 : r = PyTuple_GET_ITEM(t, 0);
809 0 : Py_INCREF(r);
810 0 : Py_DECREF(t);
811 0 : return r;
812 : }
813 :
814 : /* determine whether x is an odd integer or not; assumes that
815 : x is not an infinity or nan. */
816 : #define DOUBLE_IS_ODD_INTEGER(x) (fmod(fabs(x), 2.0) == 1.0)
817 :
818 : static PyObject *
819 3 : float_pow(PyObject *v, PyObject *w, PyObject *z)
820 : {
821 : double iv, iw, ix;
822 3 : int negate_result = 0;
823 :
824 3 : if ((PyObject *)z != Py_None) {
825 0 : PyErr_SetString(PyExc_TypeError, "pow() 3rd argument not "
826 : "allowed unless all arguments are integers");
827 0 : return NULL;
828 : }
829 :
830 3 : CONVERT_TO_DOUBLE(v, iv);
831 3 : CONVERT_TO_DOUBLE(w, iw);
832 :
833 : /* Sort out special cases here instead of relying on pow() */
834 3 : if (iw == 0) { /* v**0 is 1, even 0**0 */
835 0 : return PyFloat_FromDouble(1.0);
836 : }
837 3 : if (Py_IS_NAN(iv)) { /* nan**w = nan, unless w == 0 */
838 0 : return PyFloat_FromDouble(iv);
839 : }
840 3 : if (Py_IS_NAN(iw)) { /* v**nan = nan, unless v == 1; 1**nan = 1 */
841 0 : return PyFloat_FromDouble(iv == 1.0 ? 1.0 : iw);
842 : }
843 3 : if (Py_IS_INFINITY(iw)) {
844 : /* v**inf is: 0.0 if abs(v) < 1; 1.0 if abs(v) == 1; inf if
845 : * abs(v) > 1 (including case where v infinite)
846 : *
847 : * v**-inf is: inf if abs(v) < 1; 1.0 if abs(v) == 1; 0.0 if
848 : * abs(v) > 1 (including case where v infinite)
849 : */
850 0 : iv = fabs(iv);
851 0 : if (iv == 1.0)
852 0 : return PyFloat_FromDouble(1.0);
853 0 : else if ((iw > 0.0) == (iv > 1.0))
854 0 : return PyFloat_FromDouble(fabs(iw)); /* return inf */
855 : else
856 0 : return PyFloat_FromDouble(0.0);
857 : }
858 3 : if (Py_IS_INFINITY(iv)) {
859 : /* (+-inf)**w is: inf for w positive, 0 for w negative; in
860 : * both cases, we need to add the appropriate sign if w is
861 : * an odd integer.
862 : */
863 0 : int iw_is_odd = DOUBLE_IS_ODD_INTEGER(iw);
864 0 : if (iw > 0.0)
865 0 : return PyFloat_FromDouble(iw_is_odd ? iv : fabs(iv));
866 : else
867 0 : return PyFloat_FromDouble(iw_is_odd ?
868 0 : copysign(0.0, iv) : 0.0);
869 : }
870 3 : if (iv == 0.0) { /* 0**w is: 0 for w positive, 1 for w zero
871 : (already dealt with above), and an error
872 : if w is negative. */
873 0 : int iw_is_odd = DOUBLE_IS_ODD_INTEGER(iw);
874 0 : if (iw < 0.0) {
875 0 : PyErr_SetString(PyExc_ZeroDivisionError,
876 : "0.0 cannot be raised to a "
877 : "negative power");
878 0 : return NULL;
879 : }
880 : /* use correct sign if iw is odd */
881 0 : return PyFloat_FromDouble(iw_is_odd ? iv : 0.0);
882 : }
883 :
884 3 : if (iv < 0.0) {
885 : /* Whether this is an error is a mess, and bumps into libm
886 : * bugs so we have to figure it out ourselves.
887 : */
888 0 : if (iw != floor(iw)) {
889 0 : PyErr_SetString(PyExc_ValueError, "negative number "
890 : "cannot be raised to a fractional power");
891 0 : return NULL;
892 : }
893 : /* iw is an exact integer, albeit perhaps a very large
894 : * one. Replace iv by its absolute value and remember
895 : * to negate the pow result if iw is odd.
896 : */
897 0 : iv = -iv;
898 0 : negate_result = DOUBLE_IS_ODD_INTEGER(iw);
899 : }
900 :
901 3 : if (iv == 1.0) { /* 1**w is 1, even 1**inf and 1**nan */
902 : /* (-1) ** large_integer also ends up here. Here's an
903 : * extract from the comments for the previous
904 : * implementation explaining why this special case is
905 : * necessary:
906 : *
907 : * -1 raised to an exact integer should never be exceptional.
908 : * Alas, some libms (chiefly glibc as of early 2003) return
909 : * NaN and set EDOM on pow(-1, large_int) if the int doesn't
910 : * happen to be representable in a *C* integer. That's a
911 : * bug.
912 : */
913 0 : return PyFloat_FromDouble(negate_result ? -1.0 : 1.0);
914 : }
915 :
916 : /* Now iv and iw are finite, iw is nonzero, and iv is
917 : * positive and not equal to 1.0. We finally allow
918 : * the platform pow to step in and do the rest.
919 : */
920 3 : errno = 0;
921 : PyFPE_START_PROTECT("pow", return NULL)
922 3 : ix = pow(iv, iw);
923 : PyFPE_END_PROTECT(ix)
924 3 : Py_ADJUST_ERANGE1(ix);
925 3 : if (negate_result)
926 0 : ix = -ix;
927 :
928 3 : if (errno != 0) {
929 : /* We don't expect any errno value other than ERANGE, but
930 : * the range of libm bugs appears unbounded.
931 : */
932 0 : PyErr_SetFromErrno(errno == ERANGE ? PyExc_OverflowError :
933 : PyExc_ValueError);
934 0 : return NULL;
935 : }
936 3 : return PyFloat_FromDouble(ix);
937 : }
938 :
939 : #undef DOUBLE_IS_ODD_INTEGER
940 :
941 : static PyObject *
942 3 : float_neg(PyFloatObject *v)
943 : {
944 3 : return PyFloat_FromDouble(-v->ob_fval);
945 : }
946 :
947 : static PyObject *
948 0 : float_abs(PyFloatObject *v)
949 : {
950 0 : return PyFloat_FromDouble(fabs(v->ob_fval));
951 : }
952 :
953 : static int
954 0 : float_nonzero(PyFloatObject *v)
955 : {
956 0 : return v->ob_fval != 0.0;
957 : }
958 :
959 : static int
960 0 : float_coerce(PyObject **pv, PyObject **pw)
961 : {
962 0 : if (PyInt_Check(*pw)) {
963 0 : long x = PyInt_AsLong(*pw);
964 0 : *pw = PyFloat_FromDouble((double)x);
965 0 : Py_INCREF(*pv);
966 0 : return 0;
967 : }
968 0 : else if (PyLong_Check(*pw)) {
969 0 : double x = PyLong_AsDouble(*pw);
970 0 : if (x == -1.0 && PyErr_Occurred())
971 0 : return -1;
972 0 : *pw = PyFloat_FromDouble(x);
973 0 : Py_INCREF(*pv);
974 0 : return 0;
975 : }
976 0 : else if (PyFloat_Check(*pw)) {
977 0 : Py_INCREF(*pv);
978 0 : Py_INCREF(*pw);
979 0 : return 0;
980 : }
981 0 : return 1; /* Can't do it */
982 : }
983 :
984 : static PyObject *
985 0 : float_is_integer(PyObject *v)
986 : {
987 0 : double x = PyFloat_AsDouble(v);
988 : PyObject *o;
989 :
990 0 : if (x == -1.0 && PyErr_Occurred())
991 0 : return NULL;
992 0 : if (!Py_IS_FINITE(x))
993 0 : Py_RETURN_FALSE;
994 0 : errno = 0;
995 : PyFPE_START_PROTECT("is_integer", return NULL)
996 0 : o = (floor(x) == x) ? Py_True : Py_False;
997 : PyFPE_END_PROTECT(x)
998 0 : if (errno != 0) {
999 0 : PyErr_SetFromErrno(errno == ERANGE ? PyExc_OverflowError :
1000 : PyExc_ValueError);
1001 0 : return NULL;
1002 : }
1003 0 : Py_INCREF(o);
1004 0 : return o;
1005 : }
1006 :
1007 : #if 0
1008 : static PyObject *
1009 : float_is_inf(PyObject *v)
1010 : {
1011 : double x = PyFloat_AsDouble(v);
1012 : if (x == -1.0 && PyErr_Occurred())
1013 : return NULL;
1014 : return PyBool_FromLong((long)Py_IS_INFINITY(x));
1015 : }
1016 :
1017 : static PyObject *
1018 : float_is_nan(PyObject *v)
1019 : {
1020 : double x = PyFloat_AsDouble(v);
1021 : if (x == -1.0 && PyErr_Occurred())
1022 : return NULL;
1023 : return PyBool_FromLong((long)Py_IS_NAN(x));
1024 : }
1025 :
1026 : static PyObject *
1027 : float_is_finite(PyObject *v)
1028 : {
1029 : double x = PyFloat_AsDouble(v);
1030 : if (x == -1.0 && PyErr_Occurred())
1031 : return NULL;
1032 : return PyBool_FromLong((long)Py_IS_FINITE(x));
1033 : }
1034 : #endif
1035 :
1036 : static PyObject *
1037 0 : float_trunc(PyObject *v)
1038 : {
1039 0 : double x = PyFloat_AsDouble(v);
1040 : double wholepart; /* integral portion of x, rounded toward 0 */
1041 :
1042 0 : (void)modf(x, &wholepart);
1043 : /* Try to get out cheap if this fits in a Python int. The attempt
1044 : * to cast to long must be protected, as C doesn't define what
1045 : * happens if the double is too big to fit in a long. Some rare
1046 : * systems raise an exception then (RISCOS was mentioned as one,
1047 : * and someone using a non-default option on Sun also bumped into
1048 : * that). Note that checking for <= LONG_MAX is unsafe: if a long
1049 : * has more bits of precision than a double, casting LONG_MAX to
1050 : * double may yield an approximation, and if that's rounded up,
1051 : * then, e.g., wholepart=LONG_MAX+1 would yield true from the C
1052 : * expression wholepart<=LONG_MAX, despite that wholepart is
1053 : * actually greater than LONG_MAX. However, assuming a two's complement
1054 : * machine with no trap representation, LONG_MIN will be a power of 2 (and
1055 : * hence exactly representable as a double), and LONG_MAX = -1-LONG_MIN, so
1056 : * the comparisons with (double)LONG_MIN below should be safe.
1057 : */
1058 0 : if ((double)LONG_MIN <= wholepart && wholepart < -(double)LONG_MIN) {
1059 0 : const long aslong = (long)wholepart;
1060 0 : return PyInt_FromLong(aslong);
1061 : }
1062 0 : return PyLong_FromDouble(wholepart);
1063 : }
1064 :
1065 : static PyObject *
1066 0 : float_long(PyObject *v)
1067 : {
1068 0 : double x = PyFloat_AsDouble(v);
1069 0 : return PyLong_FromDouble(x);
1070 : }
1071 :
1072 : /* _Py_double_round: rounds a finite nonzero double to the closest multiple of
1073 : 10**-ndigits; here ndigits is within reasonable bounds (typically, -308 <=
1074 : ndigits <= 323). Returns a Python float, or sets a Python error and
1075 : returns NULL on failure (OverflowError and memory errors are possible). */
1076 :
1077 : #ifndef PY_NO_SHORT_FLOAT_REPR
1078 : /* version of _Py_double_round that uses the correctly-rounded string<->double
1079 : conversions from Python/dtoa.c */
1080 :
1081 : /* FIVE_POW_LIMIT is the largest k such that 5**k is exactly representable as
1082 : a double. Since we're using the code in Python/dtoa.c, it should be safe
1083 : to assume that C doubles are IEEE 754 binary64 format. To be on the safe
1084 : side, we check this. */
1085 : #if DBL_MANT_DIG == 53
1086 : #define FIVE_POW_LIMIT 22
1087 : #else
1088 : #error "C doubles do not appear to be IEEE 754 binary64 format"
1089 : #endif
1090 :
1091 : PyObject *
1092 0 : _Py_double_round(double x, int ndigits) {
1093 :
1094 : double rounded, m;
1095 0 : Py_ssize_t buflen, mybuflen=100;
1096 0 : char *buf, *buf_end, shortbuf[100], *mybuf=shortbuf;
1097 : int decpt, sign, val, halfway_case;
1098 0 : PyObject *result = NULL;
1099 : _Py_SET_53BIT_PRECISION_HEADER;
1100 :
1101 : /* Easy path for the common case ndigits == 0. */
1102 0 : if (ndigits == 0) {
1103 0 : rounded = round(x);
1104 0 : if (fabs(rounded - x) == 0.5)
1105 : /* halfway between two integers; use round-away-from-zero */
1106 0 : rounded = x + (x > 0.0 ? 0.5 : -0.5);
1107 0 : return PyFloat_FromDouble(rounded);
1108 : }
1109 :
1110 : /* The basic idea is very simple: convert and round the double to a
1111 : decimal string using _Py_dg_dtoa, then convert that decimal string
1112 : back to a double with _Py_dg_strtod. There's one minor difficulty:
1113 : Python 2.x expects round to do round-half-away-from-zero, while
1114 : _Py_dg_dtoa does round-half-to-even. So we need some way to detect
1115 : and correct the halfway cases.
1116 :
1117 : Detection: a halfway value has the form k * 0.5 * 10**-ndigits for
1118 : some odd integer k. Or in other words, a rational number x is
1119 : exactly halfway between two multiples of 10**-ndigits if its
1120 : 2-valuation is exactly -ndigits-1 and its 5-valuation is at least
1121 : -ndigits. For ndigits >= 0 the latter condition is automatically
1122 : satisfied for a binary float x, since any such float has
1123 : nonnegative 5-valuation. For 0 > ndigits >= -22, x needs to be an
1124 : integral multiple of 5**-ndigits; we can check this using fmod.
1125 : For -22 > ndigits, there are no halfway cases: 5**23 takes 54 bits
1126 : to represent exactly, so any odd multiple of 0.5 * 10**n for n >=
1127 : 23 takes at least 54 bits of precision to represent exactly.
1128 :
1129 : Correction: a simple strategy for dealing with halfway cases is to
1130 : (for the halfway cases only) call _Py_dg_dtoa with an argument of
1131 : ndigits+1 instead of ndigits (thus doing an exact conversion to
1132 : decimal), round the resulting string manually, and then convert
1133 : back using _Py_dg_strtod.
1134 : */
1135 :
1136 : /* nans, infinities and zeros should have already been dealt
1137 : with by the caller (in this case, builtin_round) */
1138 : assert(Py_IS_FINITE(x) && x != 0.0);
1139 :
1140 : /* find 2-valuation val of x */
1141 0 : m = frexp(x, &val);
1142 0 : while (m != floor(m)) {
1143 0 : m *= 2.0;
1144 0 : val--;
1145 : }
1146 :
1147 : /* determine whether this is a halfway case */
1148 0 : if (val == -ndigits-1) {
1149 0 : if (ndigits >= 0)
1150 0 : halfway_case = 1;
1151 0 : else if (ndigits >= -FIVE_POW_LIMIT) {
1152 0 : double five_pow = 1.0;
1153 : int i;
1154 0 : for (i=0; i < -ndigits; i++)
1155 0 : five_pow *= 5.0;
1156 0 : halfway_case = fmod(x, five_pow) == 0.0;
1157 : }
1158 : else
1159 0 : halfway_case = 0;
1160 : }
1161 : else
1162 0 : halfway_case = 0;
1163 :
1164 : /* round to a decimal string; use an extra place for halfway case */
1165 0 : _Py_SET_53BIT_PRECISION_START;
1166 0 : buf = _Py_dg_dtoa(x, 3, ndigits+halfway_case, &decpt, &sign, &buf_end);
1167 0 : _Py_SET_53BIT_PRECISION_END;
1168 0 : if (buf == NULL) {
1169 0 : PyErr_NoMemory();
1170 0 : return NULL;
1171 : }
1172 0 : buflen = buf_end - buf;
1173 :
1174 : /* in halfway case, do the round-half-away-from-zero manually */
1175 0 : if (halfway_case) {
1176 : int i, carry;
1177 : /* sanity check: _Py_dg_dtoa should not have stripped
1178 : any zeros from the result: there should be exactly
1179 : ndigits+1 places following the decimal point, and
1180 : the last digit in the buffer should be a '5'.*/
1181 : assert(buflen - decpt == ndigits+1);
1182 : assert(buf[buflen-1] == '5');
1183 :
1184 : /* increment and shift right at the same time. */
1185 0 : decpt += 1;
1186 0 : carry = 1;
1187 0 : for (i=buflen-1; i-- > 0;) {
1188 0 : carry += buf[i] - '0';
1189 0 : buf[i+1] = carry % 10 + '0';
1190 0 : carry /= 10;
1191 : }
1192 0 : buf[0] = carry + '0';
1193 : }
1194 :
1195 : /* Get new buffer if shortbuf is too small. Space needed <= buf_end -
1196 : buf + 8: (1 extra for '0', 1 for sign, 5 for exp, 1 for '\0'). */
1197 0 : if (buflen + 8 > mybuflen) {
1198 0 : mybuflen = buflen+8;
1199 0 : mybuf = (char *)PyMem_Malloc(mybuflen);
1200 0 : if (mybuf == NULL) {
1201 0 : PyErr_NoMemory();
1202 0 : goto exit;
1203 : }
1204 : }
1205 : /* copy buf to mybuf, adding exponent, sign and leading 0 */
1206 0 : PyOS_snprintf(mybuf, mybuflen, "%s0%se%d", (sign ? "-" : ""),
1207 0 : buf, decpt - (int)buflen);
1208 :
1209 : /* and convert the resulting string back to a double */
1210 0 : errno = 0;
1211 0 : _Py_SET_53BIT_PRECISION_START;
1212 0 : rounded = _Py_dg_strtod(mybuf, NULL);
1213 0 : _Py_SET_53BIT_PRECISION_END;
1214 0 : if (errno == ERANGE && fabs(rounded) >= 1.)
1215 0 : PyErr_SetString(PyExc_OverflowError,
1216 : "rounded value too large to represent");
1217 : else
1218 0 : result = PyFloat_FromDouble(rounded);
1219 :
1220 : /* done computing value; now clean up */
1221 0 : if (mybuf != shortbuf)
1222 0 : PyMem_Free(mybuf);
1223 : exit:
1224 0 : _Py_dg_freedtoa(buf);
1225 0 : return result;
1226 : }
1227 :
1228 : #undef FIVE_POW_LIMIT
1229 :
1230 : #else /* PY_NO_SHORT_FLOAT_REPR */
1231 :
1232 : /* fallback version, to be used when correctly rounded binary<->decimal
1233 : conversions aren't available */
1234 :
1235 : PyObject *
1236 : _Py_double_round(double x, int ndigits) {
1237 : double pow1, pow2, y, z;
1238 : if (ndigits >= 0) {
1239 : if (ndigits > 22) {
1240 : /* pow1 and pow2 are each safe from overflow, but
1241 : pow1*pow2 ~= pow(10.0, ndigits) might overflow */
1242 : pow1 = pow(10.0, (double)(ndigits-22));
1243 : pow2 = 1e22;
1244 : }
1245 : else {
1246 : pow1 = pow(10.0, (double)ndigits);
1247 : pow2 = 1.0;
1248 : }
1249 : y = (x*pow1)*pow2;
1250 : /* if y overflows, then rounded value is exactly x */
1251 : if (!Py_IS_FINITE(y))
1252 : return PyFloat_FromDouble(x);
1253 : }
1254 : else {
1255 : pow1 = pow(10.0, (double)-ndigits);
1256 : pow2 = 1.0; /* unused; silences a gcc compiler warning */
1257 : y = x / pow1;
1258 : }
1259 :
1260 : z = round(y);
1261 : if (fabs(y-z) == 0.5)
1262 : /* halfway between two integers; use round-away-from-zero */
1263 : z = y + copysign(0.5, y);
1264 :
1265 : if (ndigits >= 0)
1266 : z = (z / pow2) / pow1;
1267 : else
1268 : z *= pow1;
1269 :
1270 : /* if computation resulted in overflow, raise OverflowError */
1271 : if (!Py_IS_FINITE(z)) {
1272 : PyErr_SetString(PyExc_OverflowError,
1273 : "overflow occurred during round");
1274 : return NULL;
1275 : }
1276 :
1277 : return PyFloat_FromDouble(z);
1278 : }
1279 :
1280 : #endif /* PY_NO_SHORT_FLOAT_REPR */
1281 :
1282 : static PyObject *
1283 0 : float_float(PyObject *v)
1284 : {
1285 0 : if (PyFloat_CheckExact(v))
1286 0 : Py_INCREF(v);
1287 : else
1288 0 : v = PyFloat_FromDouble(((PyFloatObject *)v)->ob_fval);
1289 0 : return v;
1290 : }
1291 :
1292 : /* turn ASCII hex characters into integer values and vice versa */
1293 :
1294 : static char
1295 0 : char_from_hex(int x)
1296 : {
1297 : assert(0 <= x && x < 16);
1298 0 : return "0123456789abcdef"[x];
1299 : }
1300 :
1301 : static int
1302 0 : hex_from_char(char c) {
1303 : int x;
1304 0 : switch(c) {
1305 : case '0':
1306 0 : x = 0;
1307 0 : break;
1308 : case '1':
1309 0 : x = 1;
1310 0 : break;
1311 : case '2':
1312 0 : x = 2;
1313 0 : break;
1314 : case '3':
1315 0 : x = 3;
1316 0 : break;
1317 : case '4':
1318 0 : x = 4;
1319 0 : break;
1320 : case '5':
1321 0 : x = 5;
1322 0 : break;
1323 : case '6':
1324 0 : x = 6;
1325 0 : break;
1326 : case '7':
1327 0 : x = 7;
1328 0 : break;
1329 : case '8':
1330 0 : x = 8;
1331 0 : break;
1332 : case '9':
1333 0 : x = 9;
1334 0 : break;
1335 : case 'a':
1336 : case 'A':
1337 0 : x = 10;
1338 0 : break;
1339 : case 'b':
1340 : case 'B':
1341 0 : x = 11;
1342 0 : break;
1343 : case 'c':
1344 : case 'C':
1345 0 : x = 12;
1346 0 : break;
1347 : case 'd':
1348 : case 'D':
1349 0 : x = 13;
1350 0 : break;
1351 : case 'e':
1352 : case 'E':
1353 0 : x = 14;
1354 0 : break;
1355 : case 'f':
1356 : case 'F':
1357 0 : x = 15;
1358 0 : break;
1359 : default:
1360 0 : x = -1;
1361 0 : break;
1362 : }
1363 0 : return x;
1364 : }
1365 :
1366 : /* convert a float to a hexadecimal string */
1367 :
1368 : /* TOHEX_NBITS is DBL_MANT_DIG rounded up to the next integer
1369 : of the form 4k+1. */
1370 : #define TOHEX_NBITS DBL_MANT_DIG + 3 - (DBL_MANT_DIG+2)%4
1371 :
1372 : static PyObject *
1373 0 : float_hex(PyObject *v)
1374 : {
1375 : double x, m;
1376 : int e, shift, i, si, esign;
1377 : /* Space for 1+(TOHEX_NBITS-1)/4 digits, a decimal point, and the
1378 : trailing NUL byte. */
1379 : char s[(TOHEX_NBITS-1)/4+3];
1380 :
1381 0 : CONVERT_TO_DOUBLE(v, x);
1382 :
1383 0 : if (Py_IS_NAN(x) || Py_IS_INFINITY(x))
1384 0 : return float_str((PyFloatObject *)v);
1385 :
1386 0 : if (x == 0.0) {
1387 0 : if (copysign(1.0, x) == -1.0)
1388 0 : return PyString_FromString("-0x0.0p+0");
1389 : else
1390 0 : return PyString_FromString("0x0.0p+0");
1391 : }
1392 :
1393 0 : m = frexp(fabs(x), &e);
1394 0 : shift = 1 - MAX(DBL_MIN_EXP - e, 0);
1395 0 : m = ldexp(m, shift);
1396 0 : e -= shift;
1397 :
1398 0 : si = 0;
1399 0 : s[si] = char_from_hex((int)m);
1400 0 : si++;
1401 0 : m -= (int)m;
1402 0 : s[si] = '.';
1403 0 : si++;
1404 0 : for (i=0; i < (TOHEX_NBITS-1)/4; i++) {
1405 0 : m *= 16.0;
1406 0 : s[si] = char_from_hex((int)m);
1407 0 : si++;
1408 0 : m -= (int)m;
1409 : }
1410 0 : s[si] = '\0';
1411 :
1412 0 : if (e < 0) {
1413 0 : esign = (int)'-';
1414 0 : e = -e;
1415 : }
1416 : else
1417 0 : esign = (int)'+';
1418 :
1419 0 : if (x < 0.0)
1420 0 : return PyString_FromFormat("-0x%sp%c%d", s, esign, e);
1421 : else
1422 0 : return PyString_FromFormat("0x%sp%c%d", s, esign, e);
1423 : }
1424 :
1425 : PyDoc_STRVAR(float_hex_doc,
1426 : "float.hex() -> string\n\
1427 : \n\
1428 : Return a hexadecimal representation of a floating-point number.\n\
1429 : >>> (-0.1).hex()\n\
1430 : '-0x1.999999999999ap-4'\n\
1431 : >>> 3.14159.hex()\n\
1432 : '0x1.921f9f01b866ep+1'");
1433 :
1434 : /* Case-insensitive locale-independent string match used for nan and inf
1435 : detection. t should be lower-case and null-terminated. Return a nonzero
1436 : result if the first strlen(t) characters of s match t and 0 otherwise. */
1437 :
1438 : static int
1439 0 : case_insensitive_match(const char *s, const char *t)
1440 : {
1441 0 : while(*t && Py_TOLOWER(*s) == *t) {
1442 0 : s++;
1443 0 : t++;
1444 : }
1445 0 : return *t ? 0 : 1;
1446 : }
1447 :
1448 : /* Convert a hexadecimal string to a float. */
1449 :
1450 : static PyObject *
1451 0 : float_fromhex(PyObject *cls, PyObject *arg)
1452 : {
1453 : PyObject *result_as_float, *result;
1454 : double x;
1455 : long exp, top_exp, lsb, key_digit;
1456 : char *s, *coeff_start, *s_store, *coeff_end, *exp_start, *s_end;
1457 0 : int half_eps, digit, round_up, sign=1;
1458 : Py_ssize_t length, ndigits, fdigits, i;
1459 :
1460 : /*
1461 : * For the sake of simplicity and correctness, we impose an artificial
1462 : * limit on ndigits, the total number of hex digits in the coefficient
1463 : * The limit is chosen to ensure that, writing exp for the exponent,
1464 : *
1465 : * (1) if exp > LONG_MAX/2 then the value of the hex string is
1466 : * guaranteed to overflow (provided it's nonzero)
1467 : *
1468 : * (2) if exp < LONG_MIN/2 then the value of the hex string is
1469 : * guaranteed to underflow to 0.
1470 : *
1471 : * (3) if LONG_MIN/2 <= exp <= LONG_MAX/2 then there's no danger of
1472 : * overflow in the calculation of exp and top_exp below.
1473 : *
1474 : * More specifically, ndigits is assumed to satisfy the following
1475 : * inequalities:
1476 : *
1477 : * 4*ndigits <= DBL_MIN_EXP - DBL_MANT_DIG - LONG_MIN/2
1478 : * 4*ndigits <= LONG_MAX/2 + 1 - DBL_MAX_EXP
1479 : *
1480 : * If either of these inequalities is not satisfied, a ValueError is
1481 : * raised. Otherwise, write x for the value of the hex string, and
1482 : * assume x is nonzero. Then
1483 : *
1484 : * 2**(exp-4*ndigits) <= |x| < 2**(exp+4*ndigits).
1485 : *
1486 : * Now if exp > LONG_MAX/2 then:
1487 : *
1488 : * exp - 4*ndigits >= LONG_MAX/2 + 1 - (LONG_MAX/2 + 1 - DBL_MAX_EXP)
1489 : * = DBL_MAX_EXP
1490 : *
1491 : * so |x| >= 2**DBL_MAX_EXP, which is too large to be stored in C
1492 : * double, so overflows. If exp < LONG_MIN/2, then
1493 : *
1494 : * exp + 4*ndigits <= LONG_MIN/2 - 1 + (
1495 : * DBL_MIN_EXP - DBL_MANT_DIG - LONG_MIN/2)
1496 : * = DBL_MIN_EXP - DBL_MANT_DIG - 1
1497 : *
1498 : * and so |x| < 2**(DBL_MIN_EXP-DBL_MANT_DIG-1), hence underflows to 0
1499 : * when converted to a C double.
1500 : *
1501 : * It's easy to show that if LONG_MIN/2 <= exp <= LONG_MAX/2 then both
1502 : * exp+4*ndigits and exp-4*ndigits are within the range of a long.
1503 : */
1504 :
1505 0 : if (PyString_AsStringAndSize(arg, &s, &length))
1506 0 : return NULL;
1507 0 : s_end = s + length;
1508 :
1509 : /********************
1510 : * Parse the string *
1511 : ********************/
1512 :
1513 : /* leading whitespace and optional sign */
1514 0 : while (Py_ISSPACE(*s))
1515 0 : s++;
1516 0 : if (*s == '-') {
1517 0 : s++;
1518 0 : sign = -1;
1519 : }
1520 0 : else if (*s == '+')
1521 0 : s++;
1522 :
1523 : /* infinities and nans */
1524 0 : if (*s == 'i' || *s == 'I') {
1525 0 : if (!case_insensitive_match(s+1, "nf"))
1526 0 : goto parse_error;
1527 0 : s += 3;
1528 0 : x = Py_HUGE_VAL;
1529 0 : if (case_insensitive_match(s, "inity"))
1530 0 : s += 5;
1531 0 : goto finished;
1532 : }
1533 0 : if (*s == 'n' || *s == 'N') {
1534 0 : if (!case_insensitive_match(s+1, "an"))
1535 0 : goto parse_error;
1536 0 : s += 3;
1537 0 : x = Py_NAN;
1538 0 : goto finished;
1539 : }
1540 :
1541 : /* [0x] */
1542 0 : s_store = s;
1543 0 : if (*s == '0') {
1544 0 : s++;
1545 0 : if (*s == 'x' || *s == 'X')
1546 0 : s++;
1547 : else
1548 0 : s = s_store;
1549 : }
1550 :
1551 : /* coefficient: <integer> [. <fraction>] */
1552 0 : coeff_start = s;
1553 0 : while (hex_from_char(*s) >= 0)
1554 0 : s++;
1555 0 : s_store = s;
1556 0 : if (*s == '.') {
1557 0 : s++;
1558 0 : while (hex_from_char(*s) >= 0)
1559 0 : s++;
1560 0 : coeff_end = s-1;
1561 : }
1562 : else
1563 0 : coeff_end = s;
1564 :
1565 : /* ndigits = total # of hex digits; fdigits = # after point */
1566 0 : ndigits = coeff_end - coeff_start;
1567 0 : fdigits = coeff_end - s_store;
1568 0 : if (ndigits == 0)
1569 0 : goto parse_error;
1570 0 : if (ndigits > MIN(DBL_MIN_EXP - DBL_MANT_DIG - LONG_MIN/2,
1571 : LONG_MAX/2 + 1 - DBL_MAX_EXP)/4)
1572 0 : goto insane_length_error;
1573 :
1574 : /* [p <exponent>] */
1575 0 : if (*s == 'p' || *s == 'P') {
1576 0 : s++;
1577 0 : exp_start = s;
1578 0 : if (*s == '-' || *s == '+')
1579 0 : s++;
1580 0 : if (!('0' <= *s && *s <= '9'))
1581 : goto parse_error;
1582 0 : s++;
1583 0 : while ('0' <= *s && *s <= '9')
1584 0 : s++;
1585 0 : exp = strtol(exp_start, NULL, 10);
1586 : }
1587 : else
1588 0 : exp = 0;
1589 :
1590 : /* for 0 <= j < ndigits, HEX_DIGIT(j) gives the jth most significant digit */
1591 : #define HEX_DIGIT(j) hex_from_char(*((j) < fdigits ? \
1592 : coeff_end-(j) : \
1593 : coeff_end-1-(j)))
1594 :
1595 : /*******************************************
1596 : * Compute rounded value of the hex string *
1597 : *******************************************/
1598 :
1599 : /* Discard leading zeros, and catch extreme overflow and underflow */
1600 0 : while (ndigits > 0 && HEX_DIGIT(ndigits-1) == 0)
1601 0 : ndigits--;
1602 0 : if (ndigits == 0 || exp < LONG_MIN/2) {
1603 0 : x = 0.0;
1604 0 : goto finished;
1605 : }
1606 0 : if (exp > LONG_MAX/2)
1607 0 : goto overflow_error;
1608 :
1609 : /* Adjust exponent for fractional part. */
1610 0 : exp = exp - 4*((long)fdigits);
1611 :
1612 : /* top_exp = 1 more than exponent of most sig. bit of coefficient */
1613 0 : top_exp = exp + 4*((long)ndigits - 1);
1614 0 : for (digit = HEX_DIGIT(ndigits-1); digit != 0; digit /= 2)
1615 0 : top_exp++;
1616 :
1617 : /* catch almost all nonextreme cases of overflow and underflow here */
1618 0 : if (top_exp < DBL_MIN_EXP - DBL_MANT_DIG) {
1619 0 : x = 0.0;
1620 0 : goto finished;
1621 : }
1622 0 : if (top_exp > DBL_MAX_EXP)
1623 0 : goto overflow_error;
1624 :
1625 : /* lsb = exponent of least significant bit of the *rounded* value.
1626 : This is top_exp - DBL_MANT_DIG unless result is subnormal. */
1627 0 : lsb = MAX(top_exp, (long)DBL_MIN_EXP) - DBL_MANT_DIG;
1628 :
1629 0 : x = 0.0;
1630 0 : if (exp >= lsb) {
1631 : /* no rounding required */
1632 0 : for (i = ndigits-1; i >= 0; i--)
1633 0 : x = 16.0*x + HEX_DIGIT(i);
1634 0 : x = ldexp(x, (int)(exp));
1635 0 : goto finished;
1636 : }
1637 : /* rounding required. key_digit is the index of the hex digit
1638 : containing the first bit to be rounded away. */
1639 0 : half_eps = 1 << (int)((lsb - exp - 1) % 4);
1640 0 : key_digit = (lsb - exp - 1) / 4;
1641 0 : for (i = ndigits-1; i > key_digit; i--)
1642 0 : x = 16.0*x + HEX_DIGIT(i);
1643 0 : digit = HEX_DIGIT(key_digit);
1644 0 : x = 16.0*x + (double)(digit & (16-2*half_eps));
1645 :
1646 : /* round-half-even: round up if bit lsb-1 is 1 and at least one of
1647 : bits lsb, lsb-2, lsb-3, lsb-4, ... is 1. */
1648 0 : if ((digit & half_eps) != 0) {
1649 0 : round_up = 0;
1650 0 : if ((digit & (3*half_eps-1)) != 0 ||
1651 0 : (half_eps == 8 && (HEX_DIGIT(key_digit+1) & 1) != 0))
1652 0 : round_up = 1;
1653 : else
1654 0 : for (i = key_digit-1; i >= 0; i--)
1655 0 : if (HEX_DIGIT(i) != 0) {
1656 0 : round_up = 1;
1657 0 : break;
1658 : }
1659 0 : if (round_up == 1) {
1660 0 : x += 2*half_eps;
1661 0 : if (top_exp == DBL_MAX_EXP &&
1662 0 : x == ldexp((double)(2*half_eps), DBL_MANT_DIG))
1663 : /* overflow corner case: pre-rounded value <
1664 : 2**DBL_MAX_EXP; rounded=2**DBL_MAX_EXP. */
1665 0 : goto overflow_error;
1666 : }
1667 : }
1668 0 : x = ldexp(x, (int)(exp+4*key_digit));
1669 :
1670 : finished:
1671 : /* optional trailing whitespace leading to the end of the string */
1672 0 : while (Py_ISSPACE(*s))
1673 0 : s++;
1674 0 : if (s != s_end)
1675 0 : goto parse_error;
1676 0 : result_as_float = Py_BuildValue("(d)", sign * x);
1677 0 : if (result_as_float == NULL)
1678 0 : return NULL;
1679 0 : result = PyObject_CallObject(cls, result_as_float);
1680 0 : Py_DECREF(result_as_float);
1681 0 : return result;
1682 :
1683 : overflow_error:
1684 0 : PyErr_SetString(PyExc_OverflowError,
1685 : "hexadecimal value too large to represent as a float");
1686 0 : return NULL;
1687 :
1688 : parse_error:
1689 0 : PyErr_SetString(PyExc_ValueError,
1690 : "invalid hexadecimal floating-point string");
1691 0 : return NULL;
1692 :
1693 : insane_length_error:
1694 0 : PyErr_SetString(PyExc_ValueError,
1695 : "hexadecimal string too long to convert");
1696 0 : return NULL;
1697 : }
1698 :
1699 : PyDoc_STRVAR(float_fromhex_doc,
1700 : "float.fromhex(string) -> float\n\
1701 : \n\
1702 : Create a floating-point number from a hexadecimal string.\n\
1703 : >>> float.fromhex('0x1.ffffp10')\n\
1704 : 2047.984375\n\
1705 : >>> float.fromhex('-0x1p-1074')\n\
1706 : -4.9406564584124654e-324");
1707 :
1708 :
1709 : static PyObject *
1710 0 : float_as_integer_ratio(PyObject *v, PyObject *unused)
1711 : {
1712 : double self;
1713 : double float_part;
1714 : int exponent;
1715 : int i;
1716 :
1717 : PyObject *prev;
1718 0 : PyObject *py_exponent = NULL;
1719 0 : PyObject *numerator = NULL;
1720 0 : PyObject *denominator = NULL;
1721 0 : PyObject *result_pair = NULL;
1722 0 : PyNumberMethods *long_methods = PyLong_Type.tp_as_number;
1723 :
1724 : #define INPLACE_UPDATE(obj, call) \
1725 : prev = obj; \
1726 : obj = call; \
1727 : Py_DECREF(prev); \
1728 :
1729 0 : CONVERT_TO_DOUBLE(v, self);
1730 :
1731 0 : if (Py_IS_INFINITY(self)) {
1732 0 : PyErr_SetString(PyExc_OverflowError,
1733 : "Cannot pass infinity to float.as_integer_ratio.");
1734 0 : return NULL;
1735 : }
1736 : #ifdef Py_NAN
1737 0 : if (Py_IS_NAN(self)) {
1738 0 : PyErr_SetString(PyExc_ValueError,
1739 : "Cannot pass NaN to float.as_integer_ratio.");
1740 0 : return NULL;
1741 : }
1742 : #endif
1743 :
1744 : PyFPE_START_PROTECT("as_integer_ratio", goto error);
1745 0 : float_part = frexp(self, &exponent); /* self == float_part * 2**exponent exactly */
1746 : PyFPE_END_PROTECT(float_part);
1747 :
1748 0 : for (i=0; i<300 && float_part != floor(float_part) ; i++) {
1749 0 : float_part *= 2.0;
1750 0 : exponent--;
1751 : }
1752 : /* self == float_part * 2**exponent exactly and float_part is integral.
1753 : If FLT_RADIX != 2, the 300 steps may leave a tiny fractional part
1754 : to be truncated by PyLong_FromDouble(). */
1755 :
1756 0 : numerator = PyLong_FromDouble(float_part);
1757 0 : if (numerator == NULL) goto error;
1758 :
1759 : /* fold in 2**exponent */
1760 0 : denominator = PyLong_FromLong(1);
1761 0 : py_exponent = PyLong_FromLong(labs((long)exponent));
1762 0 : if (py_exponent == NULL) goto error;
1763 0 : INPLACE_UPDATE(py_exponent,
1764 : long_methods->nb_lshift(denominator, py_exponent));
1765 0 : if (py_exponent == NULL) goto error;
1766 0 : if (exponent > 0) {
1767 0 : INPLACE_UPDATE(numerator,
1768 : long_methods->nb_multiply(numerator, py_exponent));
1769 0 : if (numerator == NULL) goto error;
1770 : }
1771 : else {
1772 0 : Py_DECREF(denominator);
1773 0 : denominator = py_exponent;
1774 0 : py_exponent = NULL;
1775 : }
1776 :
1777 : /* Returns ints instead of longs where possible */
1778 0 : INPLACE_UPDATE(numerator, PyNumber_Int(numerator));
1779 0 : if (numerator == NULL) goto error;
1780 0 : INPLACE_UPDATE(denominator, PyNumber_Int(denominator));
1781 0 : if (denominator == NULL) goto error;
1782 :
1783 0 : result_pair = PyTuple_Pack(2, numerator, denominator);
1784 :
1785 : #undef INPLACE_UPDATE
1786 : error:
1787 0 : Py_XDECREF(py_exponent);
1788 0 : Py_XDECREF(denominator);
1789 0 : Py_XDECREF(numerator);
1790 0 : return result_pair;
1791 : }
1792 :
1793 : PyDoc_STRVAR(float_as_integer_ratio_doc,
1794 : "float.as_integer_ratio() -> (int, int)\n"
1795 : "\n"
1796 : "Return a pair of integers, whose ratio is exactly equal to the original\n"
1797 : "float and with a positive denominator.\n"
1798 : "Raise OverflowError on infinities and a ValueError on NaNs.\n"
1799 : "\n"
1800 : ">>> (10.0).as_integer_ratio()\n"
1801 : "(10, 1)\n"
1802 : ">>> (0.0).as_integer_ratio()\n"
1803 : "(0, 1)\n"
1804 : ">>> (-.25).as_integer_ratio()\n"
1805 : "(-1, 4)");
1806 :
1807 :
1808 : static PyObject *
1809 : float_subtype_new(PyTypeObject *type, PyObject *args, PyObject *kwds);
1810 :
1811 : static PyObject *
1812 3 : float_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
1813 : {
1814 3 : PyObject *x = Py_False; /* Integer zero */
1815 : static char *kwlist[] = {"x", 0};
1816 :
1817 3 : if (type != &PyFloat_Type)
1818 0 : return float_subtype_new(type, args, kwds); /* Wimp out */
1819 3 : if (!PyArg_ParseTupleAndKeywords(args, kwds, "|O:float", kwlist, &x))
1820 0 : return NULL;
1821 : /* If it's a string, but not a string subclass, use
1822 : PyFloat_FromString. */
1823 3 : if (PyString_CheckExact(x))
1824 3 : return PyFloat_FromString(x, NULL);
1825 0 : return PyNumber_Float(x);
1826 : }
1827 :
1828 : /* Wimpy, slow approach to tp_new calls for subtypes of float:
1829 : first create a regular float from whatever arguments we got,
1830 : then allocate a subtype instance and initialize its ob_fval
1831 : from the regular float. The regular float is then thrown away.
1832 : */
1833 : static PyObject *
1834 0 : float_subtype_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
1835 : {
1836 : PyObject *tmp, *newobj;
1837 :
1838 : assert(PyType_IsSubtype(type, &PyFloat_Type));
1839 0 : tmp = float_new(&PyFloat_Type, args, kwds);
1840 0 : if (tmp == NULL)
1841 0 : return NULL;
1842 : assert(PyFloat_Check(tmp));
1843 0 : newobj = type->tp_alloc(type, 0);
1844 0 : if (newobj == NULL) {
1845 0 : Py_DECREF(tmp);
1846 0 : return NULL;
1847 : }
1848 0 : ((PyFloatObject *)newobj)->ob_fval = ((PyFloatObject *)tmp)->ob_fval;
1849 0 : Py_DECREF(tmp);
1850 0 : return newobj;
1851 : }
1852 :
1853 : static PyObject *
1854 0 : float_getnewargs(PyFloatObject *v)
1855 : {
1856 0 : return Py_BuildValue("(d)", v->ob_fval);
1857 : }
1858 :
1859 : /* this is for the benefit of the pack/unpack routines below */
1860 :
1861 : typedef enum {
1862 : unknown_format, ieee_big_endian_format, ieee_little_endian_format
1863 : } float_format_type;
1864 :
1865 : static float_format_type double_format, float_format;
1866 : static float_format_type detected_double_format, detected_float_format;
1867 :
1868 : static PyObject *
1869 0 : float_getformat(PyTypeObject *v, PyObject* arg)
1870 : {
1871 : char* s;
1872 : float_format_type r;
1873 :
1874 0 : if (!PyString_Check(arg)) {
1875 0 : PyErr_Format(PyExc_TypeError,
1876 : "__getformat__() argument must be string, not %.500s",
1877 0 : Py_TYPE(arg)->tp_name);
1878 0 : return NULL;
1879 : }
1880 0 : s = PyString_AS_STRING(arg);
1881 0 : if (strcmp(s, "double") == 0) {
1882 0 : r = double_format;
1883 : }
1884 0 : else if (strcmp(s, "float") == 0) {
1885 0 : r = float_format;
1886 : }
1887 : else {
1888 0 : PyErr_SetString(PyExc_ValueError,
1889 : "__getformat__() argument 1 must be "
1890 : "'double' or 'float'");
1891 0 : return NULL;
1892 : }
1893 :
1894 0 : switch (r) {
1895 : case unknown_format:
1896 0 : return PyString_FromString("unknown");
1897 : case ieee_little_endian_format:
1898 0 : return PyString_FromString("IEEE, little-endian");
1899 : case ieee_big_endian_format:
1900 0 : return PyString_FromString("IEEE, big-endian");
1901 : default:
1902 0 : Py_FatalError("insane float_format or double_format");
1903 0 : return NULL;
1904 : }
1905 : }
1906 :
1907 : PyDoc_STRVAR(float_getformat_doc,
1908 : "float.__getformat__(typestr) -> string\n"
1909 : "\n"
1910 : "You probably don't want to use this function. It exists mainly to be\n"
1911 : "used in Python's test suite.\n"
1912 : "\n"
1913 : "typestr must be 'double' or 'float'. This function returns whichever of\n"
1914 : "'unknown', 'IEEE, big-endian' or 'IEEE, little-endian' best describes the\n"
1915 : "format of floating point numbers used by the C type named by typestr.");
1916 :
1917 : static PyObject *
1918 0 : float_setformat(PyTypeObject *v, PyObject* args)
1919 : {
1920 : char* typestr;
1921 : char* format;
1922 : float_format_type f;
1923 : float_format_type detected;
1924 : float_format_type *p;
1925 :
1926 0 : if (!PyArg_ParseTuple(args, "ss:__setformat__", &typestr, &format))
1927 0 : return NULL;
1928 :
1929 0 : if (strcmp(typestr, "double") == 0) {
1930 0 : p = &double_format;
1931 0 : detected = detected_double_format;
1932 : }
1933 0 : else if (strcmp(typestr, "float") == 0) {
1934 0 : p = &float_format;
1935 0 : detected = detected_float_format;
1936 : }
1937 : else {
1938 0 : PyErr_SetString(PyExc_ValueError,
1939 : "__setformat__() argument 1 must "
1940 : "be 'double' or 'float'");
1941 0 : return NULL;
1942 : }
1943 :
1944 0 : if (strcmp(format, "unknown") == 0) {
1945 0 : f = unknown_format;
1946 : }
1947 0 : else if (strcmp(format, "IEEE, little-endian") == 0) {
1948 0 : f = ieee_little_endian_format;
1949 : }
1950 0 : else if (strcmp(format, "IEEE, big-endian") == 0) {
1951 0 : f = ieee_big_endian_format;
1952 : }
1953 : else {
1954 0 : PyErr_SetString(PyExc_ValueError,
1955 : "__setformat__() argument 2 must be "
1956 : "'unknown', 'IEEE, little-endian' or "
1957 : "'IEEE, big-endian'");
1958 0 : return NULL;
1959 :
1960 : }
1961 :
1962 0 : if (f != unknown_format && f != detected) {
1963 0 : PyErr_Format(PyExc_ValueError,
1964 : "can only set %s format to 'unknown' or the "
1965 : "detected platform value", typestr);
1966 0 : return NULL;
1967 : }
1968 :
1969 0 : *p = f;
1970 0 : Py_RETURN_NONE;
1971 : }
1972 :
1973 : PyDoc_STRVAR(float_setformat_doc,
1974 : "float.__setformat__(typestr, fmt) -> None\n"
1975 : "\n"
1976 : "You probably don't want to use this function. It exists mainly to be\n"
1977 : "used in Python's test suite.\n"
1978 : "\n"
1979 : "typestr must be 'double' or 'float'. fmt must be one of 'unknown',\n"
1980 : "'IEEE, big-endian' or 'IEEE, little-endian', and in addition can only be\n"
1981 : "one of the latter two if it appears to match the underlying C reality.\n"
1982 : "\n"
1983 : "Override the automatic determination of C-level floating point type.\n"
1984 : "This affects how floats are converted to and from binary strings.");
1985 :
1986 : static PyObject *
1987 0 : float_getzero(PyObject *v, void *closure)
1988 : {
1989 0 : return PyFloat_FromDouble(0.0);
1990 : }
1991 :
1992 : static PyObject *
1993 0 : float__format__(PyObject *self, PyObject *args)
1994 : {
1995 : PyObject *format_spec;
1996 :
1997 0 : if (!PyArg_ParseTuple(args, "O:__format__", &format_spec))
1998 0 : return NULL;
1999 0 : if (PyBytes_Check(format_spec))
2000 0 : return _PyFloat_FormatAdvanced(self,
2001 0 : PyBytes_AS_STRING(format_spec),
2002 0 : PyBytes_GET_SIZE(format_spec));
2003 0 : if (PyUnicode_Check(format_spec)) {
2004 : /* Convert format_spec to a str */
2005 : PyObject *result;
2006 0 : PyObject *str_spec = PyObject_Str(format_spec);
2007 :
2008 0 : if (str_spec == NULL)
2009 0 : return NULL;
2010 :
2011 0 : result = _PyFloat_FormatAdvanced(self,
2012 0 : PyBytes_AS_STRING(str_spec),
2013 : PyBytes_GET_SIZE(str_spec));
2014 :
2015 0 : Py_DECREF(str_spec);
2016 0 : return result;
2017 : }
2018 0 : PyErr_SetString(PyExc_TypeError, "__format__ requires str or unicode");
2019 0 : return NULL;
2020 : }
2021 :
2022 : PyDoc_STRVAR(float__format__doc,
2023 : "float.__format__(format_spec) -> string\n"
2024 : "\n"
2025 : "Formats the float according to format_spec.");
2026 :
2027 :
2028 : static PyMethodDef float_methods[] = {
2029 : {"conjugate", (PyCFunction)float_float, METH_NOARGS,
2030 : "Return self, the complex conjugate of any float."},
2031 : {"__trunc__", (PyCFunction)float_trunc, METH_NOARGS,
2032 : "Return the Integral closest to x between 0 and x."},
2033 : {"as_integer_ratio", (PyCFunction)float_as_integer_ratio, METH_NOARGS,
2034 : float_as_integer_ratio_doc},
2035 : {"fromhex", (PyCFunction)float_fromhex,
2036 : METH_O|METH_CLASS, float_fromhex_doc},
2037 : {"hex", (PyCFunction)float_hex,
2038 : METH_NOARGS, float_hex_doc},
2039 : {"is_integer", (PyCFunction)float_is_integer, METH_NOARGS,
2040 : "Return True if the float is an integer."},
2041 : #if 0
2042 : {"is_inf", (PyCFunction)float_is_inf, METH_NOARGS,
2043 : "Return True if the float is positive or negative infinite."},
2044 : {"is_finite", (PyCFunction)float_is_finite, METH_NOARGS,
2045 : "Return True if the float is finite, neither infinite nor NaN."},
2046 : {"is_nan", (PyCFunction)float_is_nan, METH_NOARGS,
2047 : "Return True if the float is not a number (NaN)."},
2048 : #endif
2049 : {"__getnewargs__", (PyCFunction)float_getnewargs, METH_NOARGS},
2050 : {"__getformat__", (PyCFunction)float_getformat,
2051 : METH_O|METH_CLASS, float_getformat_doc},
2052 : {"__setformat__", (PyCFunction)float_setformat,
2053 : METH_VARARGS|METH_CLASS, float_setformat_doc},
2054 : {"__format__", (PyCFunction)float__format__,
2055 : METH_VARARGS, float__format__doc},
2056 : {NULL, NULL} /* sentinel */
2057 : };
2058 :
2059 : static PyGetSetDef float_getset[] = {
2060 : {"real",
2061 : (getter)float_float, (setter)NULL,
2062 : "the real part of a complex number",
2063 : NULL},
2064 : {"imag",
2065 : (getter)float_getzero, (setter)NULL,
2066 : "the imaginary part of a complex number",
2067 : NULL},
2068 : {NULL} /* Sentinel */
2069 : };
2070 :
2071 : PyDoc_STRVAR(float_doc,
2072 : "float(x) -> floating point number\n\
2073 : \n\
2074 : Convert a string or number to a floating point number, if possible.");
2075 :
2076 :
2077 : static PyNumberMethods float_as_number = {
2078 : float_add, /*nb_add*/
2079 : float_sub, /*nb_subtract*/
2080 : float_mul, /*nb_multiply*/
2081 : float_classic_div, /*nb_divide*/
2082 : float_rem, /*nb_remainder*/
2083 : float_divmod, /*nb_divmod*/
2084 : float_pow, /*nb_power*/
2085 : (unaryfunc)float_neg, /*nb_negative*/
2086 : (unaryfunc)float_float, /*nb_positive*/
2087 : (unaryfunc)float_abs, /*nb_absolute*/
2088 : (inquiry)float_nonzero, /*nb_nonzero*/
2089 : 0, /*nb_invert*/
2090 : 0, /*nb_lshift*/
2091 : 0, /*nb_rshift*/
2092 : 0, /*nb_and*/
2093 : 0, /*nb_xor*/
2094 : 0, /*nb_or*/
2095 : float_coerce, /*nb_coerce*/
2096 : float_trunc, /*nb_int*/
2097 : float_long, /*nb_long*/
2098 : float_float, /*nb_float*/
2099 : 0, /* nb_oct */
2100 : 0, /* nb_hex */
2101 : 0, /* nb_inplace_add */
2102 : 0, /* nb_inplace_subtract */
2103 : 0, /* nb_inplace_multiply */
2104 : 0, /* nb_inplace_divide */
2105 : 0, /* nb_inplace_remainder */
2106 : 0, /* nb_inplace_power */
2107 : 0, /* nb_inplace_lshift */
2108 : 0, /* nb_inplace_rshift */
2109 : 0, /* nb_inplace_and */
2110 : 0, /* nb_inplace_xor */
2111 : 0, /* nb_inplace_or */
2112 : float_floor_div, /* nb_floor_divide */
2113 : float_div, /* nb_true_divide */
2114 : 0, /* nb_inplace_floor_divide */
2115 : 0, /* nb_inplace_true_divide */
2116 : };
2117 :
2118 : PyTypeObject PyFloat_Type = {
2119 : PyVarObject_HEAD_INIT(&PyType_Type, 0)
2120 : "float",
2121 : sizeof(PyFloatObject),
2122 : 0,
2123 : (destructor)float_dealloc, /* tp_dealloc */
2124 : (printfunc)float_print, /* tp_print */
2125 : 0, /* tp_getattr */
2126 : 0, /* tp_setattr */
2127 : 0, /* tp_compare */
2128 : (reprfunc)float_repr, /* tp_repr */
2129 : &float_as_number, /* tp_as_number */
2130 : 0, /* tp_as_sequence */
2131 : 0, /* tp_as_mapping */
2132 : (hashfunc)float_hash, /* tp_hash */
2133 : 0, /* tp_call */
2134 : (reprfunc)float_str, /* tp_str */
2135 : PyObject_GenericGetAttr, /* tp_getattro */
2136 : 0, /* tp_setattro */
2137 : 0, /* tp_as_buffer */
2138 : Py_TPFLAGS_DEFAULT | Py_TPFLAGS_CHECKTYPES |
2139 : Py_TPFLAGS_BASETYPE, /* tp_flags */
2140 : float_doc, /* tp_doc */
2141 : 0, /* tp_traverse */
2142 : 0, /* tp_clear */
2143 : float_richcompare, /* tp_richcompare */
2144 : 0, /* tp_weaklistoffset */
2145 : 0, /* tp_iter */
2146 : 0, /* tp_iternext */
2147 : float_methods, /* tp_methods */
2148 : 0, /* tp_members */
2149 : float_getset, /* tp_getset */
2150 : 0, /* tp_base */
2151 : 0, /* tp_dict */
2152 : 0, /* tp_descr_get */
2153 : 0, /* tp_descr_set */
2154 : 0, /* tp_dictoffset */
2155 : 0, /* tp_init */
2156 : 0, /* tp_alloc */
2157 : float_new, /* tp_new */
2158 : };
2159 :
2160 : void
2161 3 : _PyFloat_Init(void)
2162 : {
2163 : /* We attempt to determine if this machine is using IEEE
2164 : floating point formats by peering at the bits of some
2165 : carefully chosen values. If it looks like we are on an
2166 : IEEE platform, the float packing/unpacking routines can
2167 : just copy bits, if not they resort to arithmetic & shifts
2168 : and masks. The shifts & masks approach works on all finite
2169 : values, but what happens to infinities, NaNs and signed
2170 : zeroes on packing is an accident, and attempting to unpack
2171 : a NaN or an infinity will raise an exception.
2172 :
2173 : Note that if we're on some whacked-out platform which uses
2174 : IEEE formats but isn't strictly little-endian or big-
2175 : endian, we will fall back to the portable shifts & masks
2176 : method. */
2177 :
2178 : #if SIZEOF_DOUBLE == 8
2179 : {
2180 3 : double x = 9006104071832581.0;
2181 3 : if (memcmp(&x, "\x43\x3f\xff\x01\x02\x03\x04\x05", 8) == 0)
2182 0 : detected_double_format = ieee_big_endian_format;
2183 3 : else if (memcmp(&x, "\x05\x04\x03\x02\x01\xff\x3f\x43", 8) == 0)
2184 3 : detected_double_format = ieee_little_endian_format;
2185 : else
2186 0 : detected_double_format = unknown_format;
2187 : }
2188 : #else
2189 : detected_double_format = unknown_format;
2190 : #endif
2191 :
2192 : #if SIZEOF_FLOAT == 4
2193 : {
2194 3 : float y = 16711938.0;
2195 3 : if (memcmp(&y, "\x4b\x7f\x01\x02", 4) == 0)
2196 0 : detected_float_format = ieee_big_endian_format;
2197 3 : else if (memcmp(&y, "\x02\x01\x7f\x4b", 4) == 0)
2198 3 : detected_float_format = ieee_little_endian_format;
2199 : else
2200 0 : detected_float_format = unknown_format;
2201 : }
2202 : #else
2203 : detected_float_format = unknown_format;
2204 : #endif
2205 :
2206 3 : double_format = detected_double_format;
2207 3 : float_format = detected_float_format;
2208 :
2209 : /* Init float info */
2210 3 : if (FloatInfoType.tp_name == 0)
2211 3 : PyStructSequence_InitType(&FloatInfoType, &floatinfo_desc);
2212 3 : }
2213 :
2214 : int
2215 6 : PyFloat_ClearFreeList(void)
2216 : {
2217 : PyFloatObject *p;
2218 : PyFloatBlock *list, *next;
2219 : int i;
2220 : int u; /* remaining unfreed ints per block */
2221 6 : int freelist_size = 0;
2222 :
2223 6 : list = block_list;
2224 6 : block_list = NULL;
2225 6 : free_list = NULL;
2226 30 : while (list != NULL) {
2227 18 : u = 0;
2228 774 : for (i = 0, p = &list->objects[0];
2229 756 : i < N_FLOATOBJECTS;
2230 738 : i++, p++) {
2231 738 : if (PyFloat_CheckExact(p) && Py_REFCNT(p) != 0)
2232 351 : u++;
2233 : }
2234 18 : next = list->next;
2235 18 : if (u) {
2236 12 : list->next = block_list;
2237 12 : block_list = list;
2238 516 : for (i = 0, p = &list->objects[0];
2239 504 : i < N_FLOATOBJECTS;
2240 492 : i++, p++) {
2241 843 : if (!PyFloat_CheckExact(p) ||
2242 351 : Py_REFCNT(p) == 0) {
2243 141 : Py_TYPE(p) = (struct _typeobject *)
2244 : free_list;
2245 141 : free_list = p;
2246 : }
2247 : }
2248 : }
2249 : else {
2250 6 : PyMem_FREE(list);
2251 : }
2252 18 : freelist_size += u;
2253 18 : list = next;
2254 : }
2255 6 : return freelist_size;
2256 : }
2257 :
2258 : void
2259 3 : PyFloat_Fini(void)
2260 : {
2261 : PyFloatObject *p;
2262 : PyFloatBlock *list;
2263 : int i;
2264 : int u; /* total unfreed floats per block */
2265 :
2266 3 : u = PyFloat_ClearFreeList();
2267 :
2268 3 : if (!Py_VerboseFlag)
2269 6 : return;
2270 0 : fprintf(stderr, "# cleanup floats");
2271 0 : if (!u) {
2272 0 : fprintf(stderr, "\n");
2273 : }
2274 : else {
2275 0 : fprintf(stderr,
2276 : ": %d unfreed float%s\n",
2277 : u, u == 1 ? "" : "s");
2278 : }
2279 0 : if (Py_VerboseFlag > 1) {
2280 0 : list = block_list;
2281 0 : while (list != NULL) {
2282 0 : for (i = 0, p = &list->objects[0];
2283 0 : i < N_FLOATOBJECTS;
2284 0 : i++, p++) {
2285 0 : if (PyFloat_CheckExact(p) &&
2286 0 : Py_REFCNT(p) != 0) {
2287 0 : char *buf = PyOS_double_to_string(
2288 : PyFloat_AS_DOUBLE(p), 'r',
2289 : 0, 0, NULL);
2290 0 : if (buf) {
2291 : /* XXX(twouters) cast
2292 : refcount to long
2293 : until %zd is
2294 : universally
2295 : available
2296 : */
2297 0 : fprintf(stderr,
2298 : "# <float at %p, refcnt=%ld, val=%s>\n",
2299 : p, (long)Py_REFCNT(p), buf);
2300 0 : PyMem_Free(buf);
2301 : }
2302 : }
2303 : }
2304 0 : list = list->next;
2305 : }
2306 : }
2307 : }
2308 :
2309 : /*----------------------------------------------------------------------------
2310 : * _PyFloat_{Pack,Unpack}{4,8}. See floatobject.h.
2311 : */
2312 : int
2313 0 : _PyFloat_Pack4(double x, unsigned char *p, int le)
2314 : {
2315 0 : if (float_format == unknown_format) {
2316 : unsigned char sign;
2317 : int e;
2318 : double f;
2319 : unsigned int fbits;
2320 0 : int incr = 1;
2321 :
2322 0 : if (le) {
2323 0 : p += 3;
2324 0 : incr = -1;
2325 : }
2326 :
2327 0 : if (x < 0) {
2328 0 : sign = 1;
2329 0 : x = -x;
2330 : }
2331 : else
2332 0 : sign = 0;
2333 :
2334 0 : f = frexp(x, &e);
2335 :
2336 : /* Normalize f to be in the range [1.0, 2.0) */
2337 0 : if (0.5 <= f && f < 1.0) {
2338 0 : f *= 2.0;
2339 0 : e--;
2340 : }
2341 0 : else if (f == 0.0)
2342 0 : e = 0;
2343 : else {
2344 0 : PyErr_SetString(PyExc_SystemError,
2345 : "frexp() result out of range");
2346 0 : return -1;
2347 : }
2348 :
2349 0 : if (e >= 128)
2350 0 : goto Overflow;
2351 0 : else if (e < -126) {
2352 : /* Gradual underflow */
2353 0 : f = ldexp(f, 126 + e);
2354 0 : e = 0;
2355 : }
2356 0 : else if (!(e == 0 && f == 0.0)) {
2357 0 : e += 127;
2358 0 : f -= 1.0; /* Get rid of leading 1 */
2359 : }
2360 :
2361 0 : f *= 8388608.0; /* 2**23 */
2362 0 : fbits = (unsigned int)(f + 0.5); /* Round */
2363 : assert(fbits <= 8388608);
2364 0 : if (fbits >> 23) {
2365 : /* The carry propagated out of a string of 23 1 bits. */
2366 0 : fbits = 0;
2367 0 : ++e;
2368 0 : if (e >= 255)
2369 0 : goto Overflow;
2370 : }
2371 :
2372 : /* First byte */
2373 0 : *p = (sign << 7) | (e >> 1);
2374 0 : p += incr;
2375 :
2376 : /* Second byte */
2377 0 : *p = (char) (((e & 1) << 7) | (fbits >> 16));
2378 0 : p += incr;
2379 :
2380 : /* Third byte */
2381 0 : *p = (fbits >> 8) & 0xFF;
2382 0 : p += incr;
2383 :
2384 : /* Fourth byte */
2385 0 : *p = fbits & 0xFF;
2386 :
2387 : /* Done */
2388 0 : return 0;
2389 :
2390 : }
2391 : else {
2392 0 : float y = (float)x;
2393 0 : const char *s = (char*)&y;
2394 0 : int i, incr = 1;
2395 :
2396 0 : if (Py_IS_INFINITY(y) && !Py_IS_INFINITY(x))
2397 0 : goto Overflow;
2398 :
2399 0 : if ((float_format == ieee_little_endian_format && !le)
2400 0 : || (float_format == ieee_big_endian_format && le)) {
2401 0 : p += 3;
2402 0 : incr = -1;
2403 : }
2404 :
2405 0 : for (i = 0; i < 4; i++) {
2406 0 : *p = *s++;
2407 0 : p += incr;
2408 : }
2409 0 : return 0;
2410 : }
2411 : Overflow:
2412 0 : PyErr_SetString(PyExc_OverflowError,
2413 : "float too large to pack with f format");
2414 0 : return -1;
2415 : }
2416 :
2417 : int
2418 1 : _PyFloat_Pack8(double x, unsigned char *p, int le)
2419 : {
2420 1 : if (double_format == unknown_format) {
2421 : unsigned char sign;
2422 : int e;
2423 : double f;
2424 : unsigned int fhi, flo;
2425 0 : int incr = 1;
2426 :
2427 0 : if (le) {
2428 0 : p += 7;
2429 0 : incr = -1;
2430 : }
2431 :
2432 0 : if (x < 0) {
2433 0 : sign = 1;
2434 0 : x = -x;
2435 : }
2436 : else
2437 0 : sign = 0;
2438 :
2439 0 : f = frexp(x, &e);
2440 :
2441 : /* Normalize f to be in the range [1.0, 2.0) */
2442 0 : if (0.5 <= f && f < 1.0) {
2443 0 : f *= 2.0;
2444 0 : e--;
2445 : }
2446 0 : else if (f == 0.0)
2447 0 : e = 0;
2448 : else {
2449 0 : PyErr_SetString(PyExc_SystemError,
2450 : "frexp() result out of range");
2451 0 : return -1;
2452 : }
2453 :
2454 0 : if (e >= 1024)
2455 0 : goto Overflow;
2456 0 : else if (e < -1022) {
2457 : /* Gradual underflow */
2458 0 : f = ldexp(f, 1022 + e);
2459 0 : e = 0;
2460 : }
2461 0 : else if (!(e == 0 && f == 0.0)) {
2462 0 : e += 1023;
2463 0 : f -= 1.0; /* Get rid of leading 1 */
2464 : }
2465 :
2466 : /* fhi receives the high 28 bits; flo the low 24 bits (== 52 bits) */
2467 0 : f *= 268435456.0; /* 2**28 */
2468 0 : fhi = (unsigned int)f; /* Truncate */
2469 : assert(fhi < 268435456);
2470 :
2471 0 : f -= (double)fhi;
2472 0 : f *= 16777216.0; /* 2**24 */
2473 0 : flo = (unsigned int)(f + 0.5); /* Round */
2474 : assert(flo <= 16777216);
2475 0 : if (flo >> 24) {
2476 : /* The carry propagated out of a string of 24 1 bits. */
2477 0 : flo = 0;
2478 0 : ++fhi;
2479 0 : if (fhi >> 28) {
2480 : /* And it also progagated out of the next 28 bits. */
2481 0 : fhi = 0;
2482 0 : ++e;
2483 0 : if (e >= 2047)
2484 0 : goto Overflow;
2485 : }
2486 : }
2487 :
2488 : /* First byte */
2489 0 : *p = (sign << 7) | (e >> 4);
2490 0 : p += incr;
2491 :
2492 : /* Second byte */
2493 0 : *p = (unsigned char) (((e & 0xF) << 4) | (fhi >> 24));
2494 0 : p += incr;
2495 :
2496 : /* Third byte */
2497 0 : *p = (fhi >> 16) & 0xFF;
2498 0 : p += incr;
2499 :
2500 : /* Fourth byte */
2501 0 : *p = (fhi >> 8) & 0xFF;
2502 0 : p += incr;
2503 :
2504 : /* Fifth byte */
2505 0 : *p = fhi & 0xFF;
2506 0 : p += incr;
2507 :
2508 : /* Sixth byte */
2509 0 : *p = (flo >> 16) & 0xFF;
2510 0 : p += incr;
2511 :
2512 : /* Seventh byte */
2513 0 : *p = (flo >> 8) & 0xFF;
2514 0 : p += incr;
2515 :
2516 : /* Eighth byte */
2517 0 : *p = flo & 0xFF;
2518 : /* p += incr; Unneeded (for now) */
2519 :
2520 : /* Done */
2521 0 : return 0;
2522 :
2523 : Overflow:
2524 0 : PyErr_SetString(PyExc_OverflowError,
2525 : "float too large to pack with d format");
2526 0 : return -1;
2527 : }
2528 : else {
2529 1 : const char *s = (char*)&x;
2530 1 : int i, incr = 1;
2531 :
2532 1 : if ((double_format == ieee_little_endian_format && !le)
2533 1 : || (double_format == ieee_big_endian_format && le)) {
2534 0 : p += 7;
2535 0 : incr = -1;
2536 : }
2537 :
2538 9 : for (i = 0; i < 8; i++) {
2539 8 : *p = *s++;
2540 8 : p += incr;
2541 : }
2542 1 : return 0;
2543 : }
2544 : }
2545 :
2546 : double
2547 0 : _PyFloat_Unpack4(const unsigned char *p, int le)
2548 : {
2549 0 : if (float_format == unknown_format) {
2550 : unsigned char sign;
2551 : int e;
2552 : unsigned int f;
2553 : double x;
2554 0 : int incr = 1;
2555 :
2556 0 : if (le) {
2557 0 : p += 3;
2558 0 : incr = -1;
2559 : }
2560 :
2561 : /* First byte */
2562 0 : sign = (*p >> 7) & 1;
2563 0 : e = (*p & 0x7F) << 1;
2564 0 : p += incr;
2565 :
2566 : /* Second byte */
2567 0 : e |= (*p >> 7) & 1;
2568 0 : f = (*p & 0x7F) << 16;
2569 0 : p += incr;
2570 :
2571 0 : if (e == 255) {
2572 0 : PyErr_SetString(
2573 : PyExc_ValueError,
2574 : "can't unpack IEEE 754 special value "
2575 : "on non-IEEE platform");
2576 0 : return -1;
2577 : }
2578 :
2579 : /* Third byte */
2580 0 : f |= *p << 8;
2581 0 : p += incr;
2582 :
2583 : /* Fourth byte */
2584 0 : f |= *p;
2585 :
2586 0 : x = (double)f / 8388608.0;
2587 :
2588 : /* XXX This sadly ignores Inf/NaN issues */
2589 0 : if (e == 0)
2590 0 : e = -126;
2591 : else {
2592 0 : x += 1.0;
2593 0 : e -= 127;
2594 : }
2595 0 : x = ldexp(x, e);
2596 :
2597 0 : if (sign)
2598 0 : x = -x;
2599 :
2600 0 : return x;
2601 : }
2602 : else {
2603 : float x;
2604 :
2605 0 : if ((float_format == ieee_little_endian_format && !le)
2606 0 : || (float_format == ieee_big_endian_format && le)) {
2607 : char buf[4];
2608 0 : char *d = &buf[3];
2609 : int i;
2610 :
2611 0 : for (i = 0; i < 4; i++) {
2612 0 : *d-- = *p++;
2613 : }
2614 0 : memcpy(&x, buf, 4);
2615 : }
2616 : else {
2617 0 : memcpy(&x, p, 4);
2618 : }
2619 :
2620 0 : return x;
2621 : }
2622 : }
2623 :
2624 : double
2625 248 : _PyFloat_Unpack8(const unsigned char *p, int le)
2626 : {
2627 248 : if (double_format == unknown_format) {
2628 : unsigned char sign;
2629 : int e;
2630 : unsigned int fhi, flo;
2631 : double x;
2632 0 : int incr = 1;
2633 :
2634 0 : if (le) {
2635 0 : p += 7;
2636 0 : incr = -1;
2637 : }
2638 :
2639 : /* First byte */
2640 0 : sign = (*p >> 7) & 1;
2641 0 : e = (*p & 0x7F) << 4;
2642 :
2643 0 : p += incr;
2644 :
2645 : /* Second byte */
2646 0 : e |= (*p >> 4) & 0xF;
2647 0 : fhi = (*p & 0xF) << 24;
2648 0 : p += incr;
2649 :
2650 0 : if (e == 2047) {
2651 0 : PyErr_SetString(
2652 : PyExc_ValueError,
2653 : "can't unpack IEEE 754 special value "
2654 : "on non-IEEE platform");
2655 0 : return -1.0;
2656 : }
2657 :
2658 : /* Third byte */
2659 0 : fhi |= *p << 16;
2660 0 : p += incr;
2661 :
2662 : /* Fourth byte */
2663 0 : fhi |= *p << 8;
2664 0 : p += incr;
2665 :
2666 : /* Fifth byte */
2667 0 : fhi |= *p;
2668 0 : p += incr;
2669 :
2670 : /* Sixth byte */
2671 0 : flo = *p << 16;
2672 0 : p += incr;
2673 :
2674 : /* Seventh byte */
2675 0 : flo |= *p << 8;
2676 0 : p += incr;
2677 :
2678 : /* Eighth byte */
2679 0 : flo |= *p;
2680 :
2681 0 : x = (double)fhi + (double)flo / 16777216.0; /* 2**24 */
2682 0 : x /= 268435456.0; /* 2**28 */
2683 :
2684 0 : if (e == 0)
2685 0 : e = -1022;
2686 : else {
2687 0 : x += 1.0;
2688 0 : e -= 1023;
2689 : }
2690 0 : x = ldexp(x, e);
2691 :
2692 0 : if (sign)
2693 0 : x = -x;
2694 :
2695 0 : return x;
2696 : }
2697 : else {
2698 : double x;
2699 :
2700 248 : if ((double_format == ieee_little_endian_format && !le)
2701 248 : || (double_format == ieee_big_endian_format && le)) {
2702 : char buf[8];
2703 6 : char *d = &buf[7];
2704 : int i;
2705 :
2706 54 : for (i = 0; i < 8; i++) {
2707 48 : *d-- = *p++;
2708 : }
2709 6 : memcpy(&x, buf, 8);
2710 : }
2711 : else {
2712 242 : memcpy(&x, p, 8);
2713 : }
2714 :
2715 248 : return x;
2716 : }
2717 : }
|