LCOV - code coverage report
Current view: top level - Objects - obmalloc.c (source / functions) Hit Total Coverage
Test: CPython lcov report Lines: 173 187 92.5 %
Date: 2017-04-19 Functions: 4 4 100.0 %

          Line data    Source code
       1             : #include "Python.h"
       2             : 
       3             : #if defined(__has_feature)  /* Clang */
       4             :  #if __has_feature(address_sanitizer)  /* is ASAN enabled? */
       5             :   #define ATTRIBUTE_NO_ADDRESS_SAFETY_ANALYSIS \
       6             :         __attribute__((no_address_safety_analysis)) \
       7             :         __attribute__ ((noinline))
       8             :  #else
       9             :   #define ATTRIBUTE_NO_ADDRESS_SAFETY_ANALYSIS
      10             :  #endif
      11             : #else
      12             :  #if defined(__SANITIZE_ADDRESS__)  /* GCC 4.8.x, is ASAN enabled? */
      13             :   #define ATTRIBUTE_NO_ADDRESS_SAFETY_ANALYSIS \
      14             :         __attribute__((no_address_safety_analysis)) \
      15             :         __attribute__ ((noinline))
      16             :  #else
      17             :   #define ATTRIBUTE_NO_ADDRESS_SAFETY_ANALYSIS
      18             :  #endif
      19             : #endif
      20             : 
      21             : #ifdef WITH_PYMALLOC
      22             : 
      23             : #ifdef HAVE_MMAP
      24             :  #include <sys/mman.h>
      25             :  #ifdef MAP_ANONYMOUS
      26             :   #define ARENAS_USE_MMAP
      27             :  #endif
      28             : #endif
      29             : 
      30             : #ifdef WITH_VALGRIND
      31             : #include <valgrind/valgrind.h>
      32             : 
      33             : /* If we're using GCC, use __builtin_expect() to reduce overhead of
      34             :    the valgrind checks */
      35             : #if defined(__GNUC__) && (__GNUC__ > 2) && defined(__OPTIMIZE__)
      36             : #  define UNLIKELY(value) __builtin_expect((value), 0)
      37             : #else
      38             : #  define UNLIKELY(value) (value)
      39             : #endif
      40             : 
      41             : /* -1 indicates that we haven't checked that we're running on valgrind yet. */
      42             : static int running_on_valgrind = -1;
      43             : #endif
      44             : 
      45             : /* An object allocator for Python.
      46             : 
      47             :    Here is an introduction to the layers of the Python memory architecture,
      48             :    showing where the object allocator is actually used (layer +2), It is
      49             :    called for every object allocation and deallocation (PyObject_New/Del),
      50             :    unless the object-specific allocators implement a proprietary allocation
      51             :    scheme (ex.: ints use a simple free list). This is also the place where
      52             :    the cyclic garbage collector operates selectively on container objects.
      53             : 
      54             : 
      55             :     Object-specific allocators
      56             :     _____   ______   ______       ________
      57             :    [ int ] [ dict ] [ list ] ... [ string ]       Python core         |
      58             : +3 | <----- Object-specific memory -----> | <-- Non-object memory --> |
      59             :     _______________________________       |                           |
      60             :    [   Python's object allocator   ]      |                           |
      61             : +2 | ####### Object memory ####### | <------ Internal buffers ------> |
      62             :     ______________________________________________________________    |
      63             :    [          Python's raw memory allocator (PyMem_ API)          ]   |
      64             : +1 | <----- Python memory (under PyMem manager's control) ------> |   |
      65             :     __________________________________________________________________
      66             :    [    Underlying general-purpose allocator (ex: C library malloc)   ]
      67             :  0 | <------ Virtual memory allocated for the python process -------> |
      68             : 
      69             :    =========================================================================
      70             :     _______________________________________________________________________
      71             :    [                OS-specific Virtual Memory Manager (VMM)               ]
      72             : -1 | <--- Kernel dynamic storage allocation & management (page-based) ---> |
      73             :     __________________________________   __________________________________
      74             :    [                                  ] [                                  ]
      75             : -2 | <-- Physical memory: ROM/RAM --> | | <-- Secondary storage (swap) --> |
      76             : 
      77             : */
      78             : /*==========================================================================*/
      79             : 
      80             : /* A fast, special-purpose memory allocator for small blocks, to be used
      81             :    on top of a general-purpose malloc -- heavily based on previous art. */
      82             : 
      83             : /* Vladimir Marangozov -- August 2000 */
      84             : 
      85             : /*
      86             :  * "Memory management is where the rubber meets the road -- if we do the wrong
      87             :  * thing at any level, the results will not be good. And if we don't make the
      88             :  * levels work well together, we are in serious trouble." (1)
      89             :  *
      90             :  * (1) Paul R. Wilson, Mark S. Johnstone, Michael Neely, and David Boles,
      91             :  *    "Dynamic Storage Allocation: A Survey and Critical Review",
      92             :  *    in Proc. 1995 Int'l. Workshop on Memory Management, September 1995.
      93             :  */
      94             : 
      95             : /* #undef WITH_MEMORY_LIMITS */         /* disable mem limit checks  */
      96             : 
      97             : /*==========================================================================*/
      98             : 
      99             : /*
     100             :  * Allocation strategy abstract:
     101             :  *
     102             :  * For small requests, the allocator sub-allocates <Big> blocks of memory.
     103             :  * Requests greater than SMALL_REQUEST_THRESHOLD bytes are routed to the
     104             :  * system's allocator. 
     105             :  *
     106             :  * Small requests are grouped in size classes spaced 8 bytes apart, due
     107             :  * to the required valid alignment of the returned address. Requests of
     108             :  * a particular size are serviced from memory pools of 4K (one VMM page).
     109             :  * Pools are fragmented on demand and contain free lists of blocks of one
     110             :  * particular size class. In other words, there is a fixed-size allocator
     111             :  * for each size class. Free pools are shared by the different allocators
     112             :  * thus minimizing the space reserved for a particular size class.
     113             :  *
     114             :  * This allocation strategy is a variant of what is known as "simple
     115             :  * segregated storage based on array of free lists". The main drawback of
     116             :  * simple segregated storage is that we might end up with lot of reserved
     117             :  * memory for the different free lists, which degenerate in time. To avoid
     118             :  * this, we partition each free list in pools and we share dynamically the
     119             :  * reserved space between all free lists. This technique is quite efficient
     120             :  * for memory intensive programs which allocate mainly small-sized blocks.
     121             :  *
     122             :  * For small requests we have the following table:
     123             :  *
     124             :  * Request in bytes     Size of allocated block      Size class idx
     125             :  * ----------------------------------------------------------------
     126             :  *        1-8                     8                       0
     127             :  *        9-16                   16                       1
     128             :  *       17-24                   24                       2
     129             :  *       25-32                   32                       3
     130             :  *       33-40                   40                       4
     131             :  *       41-48                   48                       5
     132             :  *       49-56                   56                       6
     133             :  *       57-64                   64                       7
     134             :  *       65-72                   72                       8
     135             :  *        ...                   ...                     ...
     136             :  *      497-504                 504                      62
     137             :  *      505-512                 512                      63 
     138             :  *
     139             :  *      0, SMALL_REQUEST_THRESHOLD + 1 and up: routed to the underlying
     140             :  *      allocator.
     141             :  */
     142             : 
     143             : /*==========================================================================*/
     144             : 
     145             : /*
     146             :  * -- Main tunable settings section --
     147             :  */
     148             : 
     149             : /*
     150             :  * Alignment of addresses returned to the user. 8-bytes alignment works
     151             :  * on most current architectures (with 32-bit or 64-bit address busses).
     152             :  * The alignment value is also used for grouping small requests in size
     153             :  * classes spaced ALIGNMENT bytes apart.
     154             :  *
     155             :  * You shouldn't change this unless you know what you are doing.
     156             :  */
     157             : #define ALIGNMENT               8               /* must be 2^N */
     158             : #define ALIGNMENT_SHIFT         3
     159             : #define ALIGNMENT_MASK          (ALIGNMENT - 1)
     160             : 
     161             : /* Return the number of bytes in size class I, as a uint. */
     162             : #define INDEX2SIZE(I) (((uint)(I) + 1) << ALIGNMENT_SHIFT)
     163             : 
     164             : /*
     165             :  * Max size threshold below which malloc requests are considered to be
     166             :  * small enough in order to use preallocated memory pools. You can tune
     167             :  * this value according to your application behaviour and memory needs.
     168             :  *
     169             :  * The following invariants must hold:
     170             :  *      1) ALIGNMENT <= SMALL_REQUEST_THRESHOLD <= 512
     171             :  *      2) SMALL_REQUEST_THRESHOLD is evenly divisible by ALIGNMENT
     172             :  *
     173             :  * Note: a size threshold of 512 guarantees that newly created dictionaries
     174             :  * will be allocated from preallocated memory pools on 64-bit.
     175             :  *
     176             :  * Although not required, for better performance and space efficiency,
     177             :  * it is recommended that SMALL_REQUEST_THRESHOLD is set to a power of 2.
     178             :  */
     179             : #define SMALL_REQUEST_THRESHOLD 512 
     180             : #define NB_SMALL_SIZE_CLASSES   (SMALL_REQUEST_THRESHOLD / ALIGNMENT)
     181             : 
     182             : /*
     183             :  * The system's VMM page size can be obtained on most unices with a
     184             :  * getpagesize() call or deduced from various header files. To make
     185             :  * things simpler, we assume that it is 4K, which is OK for most systems.
     186             :  * It is probably better if this is the native page size, but it doesn't
     187             :  * have to be.  In theory, if SYSTEM_PAGE_SIZE is larger than the native page
     188             :  * size, then `POOL_ADDR(p)->arenaindex' could rarely cause a segmentation
     189             :  * violation fault.  4K is apparently OK for all the platforms that python
     190             :  * currently targets.
     191             :  */
     192             : #define SYSTEM_PAGE_SIZE        (4 * 1024)
     193             : #define SYSTEM_PAGE_SIZE_MASK   (SYSTEM_PAGE_SIZE - 1)
     194             : 
     195             : /*
     196             :  * Maximum amount of memory managed by the allocator for small requests.
     197             :  */
     198             : #ifdef WITH_MEMORY_LIMITS
     199             : #ifndef SMALL_MEMORY_LIMIT
     200             : #define SMALL_MEMORY_LIMIT      (64 * 1024 * 1024)      /* 64 MB -- more? */
     201             : #endif
     202             : #endif
     203             : 
     204             : /*
     205             :  * The allocator sub-allocates <Big> blocks of memory (called arenas) aligned
     206             :  * on a page boundary. This is a reserved virtual address space for the
     207             :  * current process (obtained through a malloc()/mmap() call). In no way this
     208             :  * means that the memory arenas will be used entirely. A malloc(<Big>) is
     209             :  * usually an address range reservation for <Big> bytes, unless all pages within
     210             :  * this space are referenced subsequently. So malloc'ing big blocks and not
     211             :  * using them does not mean "wasting memory". It's an addressable range
     212             :  * wastage... 
     213             :  *
     214             :  * Arenas are allocated with mmap() on systems supporting anonymous memory
     215             :  * mappings to reduce heap fragmentation.
     216             :  */
     217             : #define ARENA_SIZE              (256 << 10)     /* 256KB */
     218             : 
     219             : #ifdef WITH_MEMORY_LIMITS
     220             : #define MAX_ARENAS              (SMALL_MEMORY_LIMIT / ARENA_SIZE)
     221             : #endif
     222             : 
     223             : /*
     224             :  * Size of the pools used for small blocks. Should be a power of 2,
     225             :  * between 1K and SYSTEM_PAGE_SIZE, that is: 1k, 2k, 4k.
     226             :  */
     227             : #define POOL_SIZE               SYSTEM_PAGE_SIZE        /* must be 2^N */
     228             : #define POOL_SIZE_MASK          SYSTEM_PAGE_SIZE_MASK
     229             : 
     230             : /*
     231             :  * -- End of tunable settings section --
     232             :  */
     233             : 
     234             : /*==========================================================================*/
     235             : 
     236             : /*
     237             :  * Locking
     238             :  *
     239             :  * To reduce lock contention, it would probably be better to refine the
     240             :  * crude function locking with per size class locking. I'm not positive
     241             :  * however, whether it's worth switching to such locking policy because
     242             :  * of the performance penalty it might introduce.
     243             :  *
     244             :  * The following macros describe the simplest (should also be the fastest)
     245             :  * lock object on a particular platform and the init/fini/lock/unlock
     246             :  * operations on it. The locks defined here are not expected to be recursive
     247             :  * because it is assumed that they will always be called in the order:
     248             :  * INIT, [LOCK, UNLOCK]*, FINI.
     249             :  */
     250             : 
     251             : /*
     252             :  * Python's threads are serialized, so object malloc locking is disabled.
     253             :  */
     254             : #define SIMPLELOCK_DECL(lock)   /* simple lock declaration              */
     255             : #define SIMPLELOCK_INIT(lock)   /* allocate (if needed) and initialize  */
     256             : #define SIMPLELOCK_FINI(lock)   /* free/destroy an existing lock        */
     257             : #define SIMPLELOCK_LOCK(lock)   /* acquire released lock */
     258             : #define SIMPLELOCK_UNLOCK(lock) /* release acquired lock */
     259             : 
     260             : /*
     261             :  * Basic types
     262             :  * I don't care if these are defined in <sys/types.h> or elsewhere. Axiom.
     263             :  */
     264             : #undef  uchar
     265             : #define uchar   unsigned char   /* assuming == 8 bits  */
     266             : 
     267             : #undef  uint
     268             : #define uint    unsigned int    /* assuming >= 16 bits */
     269             : 
     270             : #undef  ulong
     271             : #define ulong   unsigned long   /* assuming >= 32 bits */
     272             : 
     273             : #undef uptr
     274             : #define uptr    Py_uintptr_t
     275             : 
     276             : /* When you say memory, my mind reasons in terms of (pointers to) blocks */
     277             : typedef uchar block;
     278             : 
     279             : /* Pool for small blocks. */
     280             : struct pool_header {
     281             :     union { block *_padding;
     282             :             uint count; } ref;          /* number of allocated blocks    */
     283             :     block *freeblock;                   /* pool's free list head         */
     284             :     struct pool_header *nextpool;       /* next pool of this size class  */
     285             :     struct pool_header *prevpool;       /* previous pool       ""        */
     286             :     uint arenaindex;                    /* index into arenas of base adr */
     287             :     uint szidx;                         /* block size class index        */
     288             :     uint nextoffset;                    /* bytes to virgin block         */
     289             :     uint maxnextoffset;                 /* largest valid nextoffset      */
     290             : };
     291             : 
     292             : typedef struct pool_header *poolp;
     293             : 
     294             : /* Record keeping for arenas. */
     295             : struct arena_object {
     296             :     /* The address of the arena, as returned by malloc.  Note that 0
     297             :      * will never be returned by a successful malloc, and is used
     298             :      * here to mark an arena_object that doesn't correspond to an
     299             :      * allocated arena.
     300             :      */
     301             :     uptr address;
     302             : 
     303             :     /* Pool-aligned pointer to the next pool to be carved off. */
     304             :     block* pool_address;
     305             : 
     306             :     /* The number of available pools in the arena:  free pools + never-
     307             :      * allocated pools.
     308             :      */
     309             :     uint nfreepools;
     310             : 
     311             :     /* The total number of pools in the arena, whether or not available. */
     312             :     uint ntotalpools;
     313             : 
     314             :     /* Singly-linked list of available pools. */
     315             :     struct pool_header* freepools;
     316             : 
     317             :     /* Whenever this arena_object is not associated with an allocated
     318             :      * arena, the nextarena member is used to link all unassociated
     319             :      * arena_objects in the singly-linked `unused_arena_objects` list.
     320             :      * The prevarena member is unused in this case.
     321             :      *
     322             :      * When this arena_object is associated with an allocated arena
     323             :      * with at least one available pool, both members are used in the
     324             :      * doubly-linked `usable_arenas` list, which is maintained in
     325             :      * increasing order of `nfreepools` values.
     326             :      *
     327             :      * Else this arena_object is associated with an allocated arena
     328             :      * all of whose pools are in use.  `nextarena` and `prevarena`
     329             :      * are both meaningless in this case.
     330             :      */
     331             :     struct arena_object* nextarena;
     332             :     struct arena_object* prevarena;
     333             : };
     334             : 
     335             : #undef  ROUNDUP
     336             : #define ROUNDUP(x)              (((x) + ALIGNMENT_MASK) & ~ALIGNMENT_MASK)
     337             : #define POOL_OVERHEAD           ROUNDUP(sizeof(struct pool_header))
     338             : 
     339             : #define DUMMY_SIZE_IDX          0xffff  /* size class of newly cached pools */
     340             : 
     341             : /* Round pointer P down to the closest pool-aligned address <= P, as a poolp */
     342             : #define POOL_ADDR(P) ((poolp)((uptr)(P) & ~(uptr)POOL_SIZE_MASK))
     343             : 
     344             : /* Return total number of blocks in pool of size index I, as a uint. */
     345             : #define NUMBLOCKS(I) ((uint)(POOL_SIZE - POOL_OVERHEAD) / INDEX2SIZE(I))
     346             : 
     347             : /*==========================================================================*/
     348             : 
     349             : /*
     350             :  * This malloc lock
     351             :  */
     352             : SIMPLELOCK_DECL(_malloc_lock)
     353             : #define LOCK()          SIMPLELOCK_LOCK(_malloc_lock)
     354             : #define UNLOCK()        SIMPLELOCK_UNLOCK(_malloc_lock)
     355             : #define LOCK_INIT()     SIMPLELOCK_INIT(_malloc_lock)
     356             : #define LOCK_FINI()     SIMPLELOCK_FINI(_malloc_lock)
     357             : 
     358             : /*
     359             :  * Pool table -- headed, circular, doubly-linked lists of partially used pools.
     360             : 
     361             : This is involved.  For an index i, usedpools[i+i] is the header for a list of
     362             : all partially used pools holding small blocks with "size class idx" i. So
     363             : usedpools[0] corresponds to blocks of size 8, usedpools[2] to blocks of size
     364             : 16, and so on:  index 2*i <-> blocks of size (i+1)<<ALIGNMENT_SHIFT.
     365             : 
     366             : Pools are carved off an arena's highwater mark (an arena_object's pool_address
     367             : member) as needed.  Once carved off, a pool is in one of three states forever
     368             : after:
     369             : 
     370             : used == partially used, neither empty nor full
     371             :     At least one block in the pool is currently allocated, and at least one
     372             :     block in the pool is not currently allocated (note this implies a pool
     373             :     has room for at least two blocks).
     374             :     This is a pool's initial state, as a pool is created only when malloc
     375             :     needs space.
     376             :     The pool holds blocks of a fixed size, and is in the circular list headed
     377             :     at usedpools[i] (see above).  It's linked to the other used pools of the
     378             :     same size class via the pool_header's nextpool and prevpool members.
     379             :     If all but one block is currently allocated, a malloc can cause a
     380             :     transition to the full state.  If all but one block is not currently
     381             :     allocated, a free can cause a transition to the empty state.
     382             : 
     383             : full == all the pool's blocks are currently allocated
     384             :     On transition to full, a pool is unlinked from its usedpools[] list.
     385             :     It's not linked to from anything then anymore, and its nextpool and
     386             :     prevpool members are meaningless until it transitions back to used.
     387             :     A free of a block in a full pool puts the pool back in the used state.
     388             :     Then it's linked in at the front of the appropriate usedpools[] list, so
     389             :     that the next allocation for its size class will reuse the freed block.
     390             : 
     391             : empty == all the pool's blocks are currently available for allocation
     392             :     On transition to empty, a pool is unlinked from its usedpools[] list,
     393             :     and linked to the front of its arena_object's singly-linked freepools list,
     394             :     via its nextpool member.  The prevpool member has no meaning in this case.
     395             :     Empty pools have no inherent size class:  the next time a malloc finds
     396             :     an empty list in usedpools[], it takes the first pool off of freepools.
     397             :     If the size class needed happens to be the same as the size class the pool
     398             :     last had, some pool initialization can be skipped.
     399             : 
     400             : 
     401             : Block Management
     402             : 
     403             : Blocks within pools are again carved out as needed.  pool->freeblock points to
     404             : the start of a singly-linked list of free blocks within the pool.  When a
     405             : block is freed, it's inserted at the front of its pool's freeblock list.  Note
     406             : that the available blocks in a pool are *not* linked all together when a pool
     407             : is initialized.  Instead only "the first two" (lowest addresses) blocks are
     408             : set up, returning the first such block, and setting pool->freeblock to a
     409             : one-block list holding the second such block.  This is consistent with that
     410             : pymalloc strives at all levels (arena, pool, and block) never to touch a piece
     411             : of memory until it's actually needed.
     412             : 
     413             : So long as a pool is in the used state, we're certain there *is* a block
     414             : available for allocating, and pool->freeblock is not NULL.  If pool->freeblock
     415             : points to the end of the free list before we've carved the entire pool into
     416             : blocks, that means we simply haven't yet gotten to one of the higher-address
     417             : blocks.  The offset from the pool_header to the start of "the next" virgin
     418             : block is stored in the pool_header nextoffset member, and the largest value
     419             : of nextoffset that makes sense is stored in the maxnextoffset member when a
     420             : pool is initialized.  All the blocks in a pool have been passed out at least
     421             : once when and only when nextoffset > maxnextoffset.
     422             : 
     423             : 
     424             : Major obscurity:  While the usedpools vector is declared to have poolp
     425             : entries, it doesn't really.  It really contains two pointers per (conceptual)
     426             : poolp entry, the nextpool and prevpool members of a pool_header.  The
     427             : excruciating initialization code below fools C so that
     428             : 
     429             :     usedpool[i+i]
     430             : 
     431             : "acts like" a genuine poolp, but only so long as you only reference its
     432             : nextpool and prevpool members.  The "- 2*sizeof(block *)" gibberish is
     433             : compensating for that a pool_header's nextpool and prevpool members
     434             : immediately follow a pool_header's first two members:
     435             : 
     436             :     union { block *_padding;
     437             :             uint count; } ref;
     438             :     block *freeblock;
     439             : 
     440             : each of which consume sizeof(block *) bytes.  So what usedpools[i+i] really
     441             : contains is a fudged-up pointer p such that *if* C believes it's a poolp
     442             : pointer, then p->nextpool and p->prevpool are both p (meaning that the headed
     443             : circular list is empty).
     444             : 
     445             : It's unclear why the usedpools setup is so convoluted.  It could be to
     446             : minimize the amount of cache required to hold this heavily-referenced table
     447             : (which only *needs* the two interpool pointer members of a pool_header). OTOH,
     448             : referencing code has to remember to "double the index" and doing so isn't
     449             : free, usedpools[0] isn't a strictly legal pointer, and we're crucially relying
     450             : on that C doesn't insert any padding anywhere in a pool_header at or before
     451             : the prevpool member.
     452             : **************************************************************************** */
     453             : 
     454             : #define PTA(x)  ((poolp )((uchar *)&(usedpools[2*(x)]) - 2*sizeof(block *)))
     455             : #define PT(x)   PTA(x), PTA(x)
     456             : 
     457             : static poolp usedpools[2 * ((NB_SMALL_SIZE_CLASSES + 7) / 8) * 8] = {
     458             :     PT(0), PT(1), PT(2), PT(3), PT(4), PT(5), PT(6), PT(7)
     459             : #if NB_SMALL_SIZE_CLASSES > 8
     460             :     , PT(8), PT(9), PT(10), PT(11), PT(12), PT(13), PT(14), PT(15)
     461             : #if NB_SMALL_SIZE_CLASSES > 16
     462             :     , PT(16), PT(17), PT(18), PT(19), PT(20), PT(21), PT(22), PT(23)
     463             : #if NB_SMALL_SIZE_CLASSES > 24
     464             :     , PT(24), PT(25), PT(26), PT(27), PT(28), PT(29), PT(30), PT(31)
     465             : #if NB_SMALL_SIZE_CLASSES > 32
     466             :     , PT(32), PT(33), PT(34), PT(35), PT(36), PT(37), PT(38), PT(39)
     467             : #if NB_SMALL_SIZE_CLASSES > 40
     468             :     , PT(40), PT(41), PT(42), PT(43), PT(44), PT(45), PT(46), PT(47)
     469             : #if NB_SMALL_SIZE_CLASSES > 48
     470             :     , PT(48), PT(49), PT(50), PT(51), PT(52), PT(53), PT(54), PT(55)
     471             : #if NB_SMALL_SIZE_CLASSES > 56
     472             :     , PT(56), PT(57), PT(58), PT(59), PT(60), PT(61), PT(62), PT(63)
     473             : #if NB_SMALL_SIZE_CLASSES > 64
     474             : #error "NB_SMALL_SIZE_CLASSES should be less than 64"
     475             : #endif /* NB_SMALL_SIZE_CLASSES > 64 */
     476             : #endif /* NB_SMALL_SIZE_CLASSES > 56 */
     477             : #endif /* NB_SMALL_SIZE_CLASSES > 48 */
     478             : #endif /* NB_SMALL_SIZE_CLASSES > 40 */
     479             : #endif /* NB_SMALL_SIZE_CLASSES > 32 */
     480             : #endif /* NB_SMALL_SIZE_CLASSES > 24 */
     481             : #endif /* NB_SMALL_SIZE_CLASSES > 16 */
     482             : #endif /* NB_SMALL_SIZE_CLASSES >  8 */
     483             : };
     484             : 
     485             : /*==========================================================================
     486             : Arena management.
     487             : 
     488             : `arenas` is a vector of arena_objects.  It contains maxarenas entries, some of
     489             : which may not be currently used (== they're arena_objects that aren't
     490             : currently associated with an allocated arena).  Note that arenas proper are
     491             : separately malloc'ed.
     492             : 
     493             : Prior to Python 2.5, arenas were never free()'ed.  Starting with Python 2.5,
     494             : we do try to free() arenas, and use some mild heuristic strategies to increase
     495             : the likelihood that arenas eventually can be freed.
     496             : 
     497             : unused_arena_objects
     498             : 
     499             :     This is a singly-linked list of the arena_objects that are currently not
     500             :     being used (no arena is associated with them).  Objects are taken off the
     501             :     head of the list in new_arena(), and are pushed on the head of the list in
     502             :     PyObject_Free() when the arena is empty.  Key invariant:  an arena_object
     503             :     is on this list if and only if its .address member is 0.
     504             : 
     505             : usable_arenas
     506             : 
     507             :     This is a doubly-linked list of the arena_objects associated with arenas
     508             :     that have pools available.  These pools are either waiting to be reused,
     509             :     or have not been used before.  The list is sorted to have the most-
     510             :     allocated arenas first (ascending order based on the nfreepools member).
     511             :     This means that the next allocation will come from a heavily used arena,
     512             :     which gives the nearly empty arenas a chance to be returned to the system.
     513             :     In my unscientific tests this dramatically improved the number of arenas
     514             :     that could be freed.
     515             : 
     516             : Note that an arena_object associated with an arena all of whose pools are
     517             : currently in use isn't on either list.
     518             : */
     519             : 
     520             : /* Array of objects used to track chunks of memory (arenas). */
     521             : static struct arena_object* arenas = NULL;
     522             : /* Number of slots currently allocated in the `arenas` vector. */
     523             : static uint maxarenas = 0;
     524             : 
     525             : /* The head of the singly-linked, NULL-terminated list of available
     526             :  * arena_objects.
     527             :  */
     528             : static struct arena_object* unused_arena_objects = NULL;
     529             : 
     530             : /* The head of the doubly-linked, NULL-terminated at each end, list of
     531             :  * arena_objects associated with arenas that have pools available.
     532             :  */
     533             : static struct arena_object* usable_arenas = NULL;
     534             : 
     535             : /* How many arena_objects do we initially allocate?
     536             :  * 16 = can allocate 16 arenas = 16 * ARENA_SIZE = 4MB before growing the
     537             :  * `arenas` vector.
     538             :  */
     539             : #define INITIAL_ARENA_OBJECTS 16
     540             : 
     541             : /* Number of arenas allocated that haven't been free()'d. */
     542             : static size_t narenas_currently_allocated = 0;
     543             : 
     544             : #ifdef PYMALLOC_DEBUG
     545             : /* Total number of times malloc() called to allocate an arena. */
     546             : static size_t ntimes_arena_allocated = 0;
     547             : /* High water mark (max value ever seen) for narenas_currently_allocated. */
     548             : static size_t narenas_highwater = 0;
     549             : #endif
     550             : 
     551             : /* Allocate a new arena.  If we run out of memory, return NULL.  Else
     552             :  * allocate a new arena, and return the address of an arena_object
     553             :  * describing the new arena.  It's expected that the caller will set
     554             :  * `usable_arenas` to the return value.
     555             :  */
     556             : static struct arena_object*
     557          90 : new_arena(void)
     558             : {
     559             :     struct arena_object* arenaobj;
     560             :     uint excess;        /* number of bytes above pool alignment */
     561             :     void *address;
     562             :     int err;
     563             : 
     564             : #ifdef PYMALLOC_DEBUG
     565             :     if (Py_GETENV("PYTHONMALLOCSTATS"))
     566             :         _PyObject_DebugMallocStats();
     567             : #endif
     568          90 :     if (unused_arena_objects == NULL) {
     569             :         uint i;
     570             :         uint numarenas;
     571             :         size_t nbytes;
     572             : 
     573             :         /* Double the number of arena objects on each allocation.
     574             :          * Note that it's possible for `numarenas` to overflow.
     575             :          */
     576           4 :         numarenas = maxarenas ? maxarenas << 1 : INITIAL_ARENA_OBJECTS;
     577           4 :         if (numarenas <= maxarenas)
     578           0 :             return NULL;                /* overflow */
     579             : #if SIZEOF_SIZE_T <= SIZEOF_INT
     580             :         if (numarenas > PY_SIZE_MAX / sizeof(*arenas))
     581             :             return NULL;                /* overflow */
     582             : #endif
     583           4 :         nbytes = numarenas * sizeof(*arenas);
     584           4 :         arenaobj = (struct arena_object *)realloc(arenas, nbytes);
     585           4 :         if (arenaobj == NULL)
     586           0 :             return NULL;
     587           4 :         arenas = arenaobj;
     588             : 
     589             :         /* We might need to fix pointers that were copied.  However,
     590             :          * new_arena only gets called when all the pages in the
     591             :          * previous arenas are full.  Thus, there are *no* pointers
     592             :          * into the old array. Thus, we don't have to worry about
     593             :          * invalid pointers.  Just to be sure, some asserts:
     594             :          */
     595             :         assert(usable_arenas == NULL);
     596             :         assert(unused_arena_objects == NULL);
     597             : 
     598             :         /* Put the new arenas on the unused_arena_objects list. */
     599          68 :         for (i = maxarenas; i < numarenas; ++i) {
     600          64 :             arenas[i].address = 0;              /* mark as unassociated */
     601         128 :             arenas[i].nextarena = i < numarenas - 1 ?
     602          64 :                                    &arenas[i+1] : NULL;
     603             :         }
     604             : 
     605             :         /* Update globals. */
     606           4 :         unused_arena_objects = &arenas[maxarenas];
     607           4 :         maxarenas = numarenas;
     608             :     }
     609             : 
     610             :     /* Take the next available arena object off the head of the list. */
     611             :     assert(unused_arena_objects != NULL);
     612          90 :     arenaobj = unused_arena_objects;
     613          90 :     unused_arena_objects = arenaobj->nextarena;
     614             :     assert(arenaobj->address == 0);
     615             : #ifdef ARENAS_USE_MMAP
     616          90 :     address = mmap(NULL, ARENA_SIZE, PROT_READ|PROT_WRITE,
     617             :                    MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
     618          90 :     err = (address == MAP_FAILED);
     619             : #else
     620             :     address = malloc(ARENA_SIZE);
     621             :     err = (address == 0);
     622             : #endif    
     623          90 :     if (err) {
     624             :         /* The allocation failed: return NULL after putting the
     625             :          * arenaobj back.
     626             :          */
     627           0 :         arenaobj->nextarena = unused_arena_objects;
     628           0 :         unused_arena_objects = arenaobj;
     629           0 :         return NULL;
     630             :     }
     631          90 :     arenaobj->address = (uptr)address;
     632             : 
     633          90 :     ++narenas_currently_allocated;
     634             : #ifdef PYMALLOC_DEBUG
     635             :     ++ntimes_arena_allocated;
     636             :     if (narenas_currently_allocated > narenas_highwater)
     637             :         narenas_highwater = narenas_currently_allocated;
     638             : #endif
     639          90 :     arenaobj->freepools = NULL;
     640             :     /* pool_address <- first pool-aligned address in the arena
     641             :        nfreepools <- number of whole pools that fit after alignment */
     642          90 :     arenaobj->pool_address = (block*)arenaobj->address;
     643          90 :     arenaobj->nfreepools = ARENA_SIZE / POOL_SIZE;
     644             :     assert(POOL_SIZE * arenaobj->nfreepools == ARENA_SIZE);
     645          90 :     excess = (uint)(arenaobj->address & POOL_SIZE_MASK);
     646          90 :     if (excess != 0) {
     647           0 :         --arenaobj->nfreepools;
     648           0 :         arenaobj->pool_address += POOL_SIZE - excess;
     649             :     }
     650          90 :     arenaobj->ntotalpools = arenaobj->nfreepools;
     651             : 
     652          90 :     return arenaobj;
     653             : }
     654             : 
     655             : /*
     656             : Py_ADDRESS_IN_RANGE(P, POOL)
     657             : 
     658             : Return true if and only if P is an address that was allocated by pymalloc.
     659             : POOL must be the pool address associated with P, i.e., POOL = POOL_ADDR(P)
     660             : (the caller is asked to compute this because the macro expands POOL more than
     661             : once, and for efficiency it's best for the caller to assign POOL_ADDR(P) to a
     662             : variable and pass the latter to the macro; because Py_ADDRESS_IN_RANGE is
     663             : called on every alloc/realloc/free, micro-efficiency is important here).
     664             : 
     665             : Tricky:  Let B be the arena base address associated with the pool, B =
     666             : arenas[(POOL)->arenaindex].address.  Then P belongs to the arena if and only if
     667             : 
     668             :     B <= P < B + ARENA_SIZE
     669             : 
     670             : Subtracting B throughout, this is true iff
     671             : 
     672             :     0 <= P-B < ARENA_SIZE
     673             : 
     674             : By using unsigned arithmetic, the "0 <=" half of the test can be skipped.
     675             : 
     676             : Obscure:  A PyMem "free memory" function can call the pymalloc free or realloc
     677             : before the first arena has been allocated.  `arenas` is still NULL in that
     678             : case.  We're relying on that maxarenas is also 0 in that case, so that
     679             : (POOL)->arenaindex < maxarenas  must be false, saving us from trying to index
     680             : into a NULL arenas.
     681             : 
     682             : Details:  given P and POOL, the arena_object corresponding to P is AO =
     683             : arenas[(POOL)->arenaindex].  Suppose obmalloc controls P.  Then (barring wild
     684             : stores, etc), POOL is the correct address of P's pool, AO.address is the
     685             : correct base address of the pool's arena, and P must be within ARENA_SIZE of
     686             : AO.address.  In addition, AO.address is not 0 (no arena can start at address 0
     687             : (NULL)).  Therefore Py_ADDRESS_IN_RANGE correctly reports that obmalloc
     688             : controls P.
     689             : 
     690             : Now suppose obmalloc does not control P (e.g., P was obtained via a direct
     691             : call to the system malloc() or realloc()).  (POOL)->arenaindex may be anything
     692             : in this case -- it may even be uninitialized trash.  If the trash arenaindex
     693             : is >= maxarenas, the macro correctly concludes at once that obmalloc doesn't
     694             : control P.
     695             : 
     696             : Else arenaindex is < maxarena, and AO is read up.  If AO corresponds to an
     697             : allocated arena, obmalloc controls all the memory in slice AO.address :
     698             : AO.address+ARENA_SIZE.  By case assumption, P is not controlled by obmalloc,
     699             : so P doesn't lie in that slice, so the macro correctly reports that P is not
     700             : controlled by obmalloc.
     701             : 
     702             : Finally, if P is not controlled by obmalloc and AO corresponds to an unused
     703             : arena_object (one not currently associated with an allocated arena),
     704             : AO.address is 0, and the second test in the macro reduces to:
     705             : 
     706             :     P < ARENA_SIZE
     707             : 
     708             : If P >= ARENA_SIZE (extremely likely), the macro again correctly concludes
     709             : that P is not controlled by obmalloc.  However, if P < ARENA_SIZE, this part
     710             : of the test still passes, and the third clause (AO.address != 0) is necessary
     711             : to get the correct result:  AO.address is 0 in this case, so the macro
     712             : correctly reports that P is not controlled by obmalloc (despite that P lies in
     713             : slice AO.address : AO.address + ARENA_SIZE).
     714             : 
     715             : Note:  The third (AO.address != 0) clause was added in Python 2.5.  Before
     716             : 2.5, arenas were never free()'ed, and an arenaindex < maxarena always
     717             : corresponded to a currently-allocated arena, so the "P is not controlled by
     718             : obmalloc, AO corresponds to an unused arena_object, and P < ARENA_SIZE" case
     719             : was impossible.
     720             : 
     721             : Note that the logic is excruciating, and reading up possibly uninitialized
     722             : memory when P is not controlled by obmalloc (to get at (POOL)->arenaindex)
     723             : creates problems for some memory debuggers.  The overwhelming advantage is
     724             : that this test determines whether an arbitrary address is controlled by
     725             : obmalloc in a small constant time, independent of the number of arenas
     726             : obmalloc controls.  Since this test is needed at every entry point, it's
     727             : extremely desirable that it be this fast.
     728             : 
     729             : Since Py_ADDRESS_IN_RANGE may be reading from memory which was not allocated
     730             : by Python, it is important that (POOL)->arenaindex is read only once, as
     731             : another thread may be concurrently modifying the value without holding the
     732             : GIL.  To accomplish this, the arenaindex_temp variable is used to store
     733             : (POOL)->arenaindex for the duration of the Py_ADDRESS_IN_RANGE macro's
     734             : execution.  The caller of the macro is responsible for declaring this
     735             : variable.
     736             : */
     737             : #define Py_ADDRESS_IN_RANGE(P, POOL)                    \
     738             :     ((arenaindex_temp = (POOL)->arenaindex) < maxarenas &&              \
     739             :      (uptr)(P) - arenas[arenaindex_temp].address < (uptr)ARENA_SIZE && \
     740             :      arenas[arenaindex_temp].address != 0)
     741             : 
     742             : 
     743             : /* This is only useful when running memory debuggers such as
     744             :  * Purify or Valgrind.  Uncomment to use.
     745             :  *
     746             : #define Py_USING_MEMORY_DEBUGGER
     747             :  */
     748             : 
     749             : #ifdef Py_USING_MEMORY_DEBUGGER
     750             : 
     751             : /* Py_ADDRESS_IN_RANGE may access uninitialized memory by design
     752             :  * This leads to thousands of spurious warnings when using
     753             :  * Purify or Valgrind.  By making a function, we can easily
     754             :  * suppress the uninitialized memory reads in this one function.
     755             :  * So we won't ignore real errors elsewhere.
     756             :  *
     757             :  * Disable the macro and use a function.
     758             :  */
     759             : 
     760             : #undef Py_ADDRESS_IN_RANGE
     761             : 
     762             : #if defined(__GNUC__) && ((__GNUC__ == 3) && (__GNUC_MINOR__ >= 1) || \
     763             :                           (__GNUC__ >= 4))
     764             : #define Py_NO_INLINE __attribute__((__noinline__))
     765             : #else
     766             : #define Py_NO_INLINE
     767             : #endif
     768             : 
     769             : /* Don't make static, to try to ensure this isn't inlined. */
     770             : int Py_ADDRESS_IN_RANGE(void *P, poolp pool) Py_NO_INLINE;
     771             : #undef Py_NO_INLINE
     772             : #endif
     773             : 
     774             : /*==========================================================================*/
     775             : 
     776             : /* malloc.  Note that nbytes==0 tries to return a non-NULL pointer, distinct
     777             :  * from all other currently live pointers.  This may not be possible.
     778             :  */
     779             : 
     780             : /*
     781             :  * The basic blocks are ordered by decreasing execution frequency,
     782             :  * which minimizes the number of jumps in the most common cases,
     783             :  * improves branching prediction and instruction scheduling (small
     784             :  * block allocations typically result in a couple of instructions).
     785             :  * Unless the optimizer reorders everything, being too smart...
     786             :  */
     787             : 
     788             : #undef PyObject_Malloc
     789             : void *
     790      733055 : PyObject_Malloc(size_t nbytes)
     791             : {
     792             :     block *bp;
     793             :     poolp pool;
     794             :     poolp next;
     795             :     uint size;
     796             : 
     797             : #ifdef WITH_VALGRIND
     798             :     if (UNLIKELY(running_on_valgrind == -1))
     799             :         running_on_valgrind = RUNNING_ON_VALGRIND;
     800             :     if (UNLIKELY(running_on_valgrind))
     801             :         goto redirect;
     802             : #endif
     803             : 
     804             :     /*
     805             :      * Limit ourselves to PY_SSIZE_T_MAX bytes to prevent security holes.
     806             :      * Most python internals blindly use a signed Py_ssize_t to track
     807             :      * things without checking for overflows or negatives.
     808             :      * As size_t is unsigned, checking for nbytes < 0 is not required.
     809             :      */
     810      733055 :     if (nbytes > PY_SSIZE_T_MAX)
     811           0 :         return NULL;
     812             : 
     813             :     /*
     814             :      * This implicitly redirects malloc(0).
     815             :      */
     816      733055 :     if ((nbytes - 1) < SMALL_REQUEST_THRESHOLD) {
     817             :         LOCK();
     818             :         /*
     819             :          * Most frequent paths first
     820             :          */
     821      726187 :         size = (uint)(nbytes - 1) >> ALIGNMENT_SHIFT;
     822      726187 :         pool = usedpools[size + size];
     823      726187 :         if (pool != pool->nextpool) {
     824             :             /*
     825             :              * There is a used pool for this size class.
     826             :              * Pick up the head block of its free list.
     827             :              */
     828      717484 :             ++pool->ref.count;
     829      717484 :             bp = pool->freeblock;
     830             :             assert(bp != NULL);
     831      717484 :             if ((pool->freeblock = *(block **)bp) != NULL) {
     832             :                 UNLOCK();
     833      349190 :                 return (void *)bp;
     834             :             }
     835             :             /*
     836             :              * Reached the end of the free list, try to extend it.
     837             :              */
     838      368294 :             if (pool->nextoffset <= pool->maxnextoffset) {
     839             :                 /* There is room for another block. */
     840      345173 :                 pool->freeblock = (block*)pool +
     841      345173 :                                   pool->nextoffset;
     842      345173 :                 pool->nextoffset += INDEX2SIZE(size);
     843      345173 :                 *(block **)(pool->freeblock) = NULL;
     844             :                 UNLOCK();
     845      345173 :                 return (void *)bp;
     846             :             }
     847             :             /* Pool is full, unlink from used pools. */
     848       23121 :             next = pool->nextpool;
     849       23121 :             pool = pool->prevpool;
     850       23121 :             next->prevpool = pool;
     851       23121 :             pool->nextpool = next;
     852             :             UNLOCK();
     853       23121 :             return (void *)bp;
     854             :         }
     855             : 
     856             :         /* There isn't a pool of the right size class immediately
     857             :          * available:  use a free pool.
     858             :          */
     859        8703 :         if (usable_arenas == NULL) {
     860             :             /* No arena has a free pool:  allocate a new arena. */
     861             : #ifdef WITH_MEMORY_LIMITS
     862             :             if (narenas_currently_allocated >= MAX_ARENAS) {
     863             :                 UNLOCK();
     864             :                 goto redirect;
     865             :             }
     866             : #endif
     867          90 :             usable_arenas = new_arena();
     868          90 :             if (usable_arenas == NULL) {
     869             :                 UNLOCK();
     870           0 :                 goto redirect;
     871             :             }
     872         180 :             usable_arenas->nextarena =
     873          90 :                 usable_arenas->prevarena = NULL;
     874             :         }
     875             :         assert(usable_arenas->address != 0);
     876             : 
     877             :         /* Try to get a cached free pool. */
     878        8703 :         pool = usable_arenas->freepools;
     879        8703 :         if (pool != NULL) {
     880             :             /* Unlink from cached pools. */
     881        4867 :             usable_arenas->freepools = pool->nextpool;
     882             : 
     883             :             /* This arena already had the smallest nfreepools
     884             :              * value, so decreasing nfreepools doesn't change
     885             :              * that, and we don't need to rearrange the
     886             :              * usable_arenas list.  However, if the arena has
     887             :              * become wholly allocated, we need to remove its
     888             :              * arena_object from usable_arenas.
     889             :              */
     890        4867 :             --usable_arenas->nfreepools;
     891        4867 :             if (usable_arenas->nfreepools == 0) {
     892             :                 /* Wholly allocated:  remove. */
     893             :                 assert(usable_arenas->freepools == NULL);
     894             :                 assert(usable_arenas->nextarena == NULL ||
     895             :                        usable_arenas->nextarena->prevarena ==
     896             :                        usable_arenas);
     897             : 
     898          95 :                 usable_arenas = usable_arenas->nextarena;
     899          95 :                 if (usable_arenas != NULL) {
     900          74 :                     usable_arenas->prevarena = NULL;
     901             :                     assert(usable_arenas->address != 0);
     902             :                 }
     903             :             }
     904             :             else {
     905             :                 /* nfreepools > 0:  it must be that freepools
     906             :                  * isn't NULL, or that we haven't yet carved
     907             :                  * off all the arena's pools for the first
     908             :                  * time.
     909             :                  */
     910             :                 assert(usable_arenas->freepools != NULL ||
     911             :                        usable_arenas->pool_address <=
     912             :                        (block*)usable_arenas->address +
     913             :                            ARENA_SIZE - POOL_SIZE);
     914             :             }
     915             :         init_pool:
     916             :             /* Frontlink to used pools. */
     917        8703 :             next = usedpools[size + size]; /* == prev */
     918        8703 :             pool->nextpool = next;
     919        8703 :             pool->prevpool = next;
     920        8703 :             next->nextpool = pool;
     921        8703 :             next->prevpool = pool;
     922        8703 :             pool->ref.count = 1;
     923        8703 :             if (pool->szidx == size) {
     924             :                 /* Luckily, this pool last contained blocks
     925             :                  * of the same size class, so its header
     926             :                  * and free list are already initialized.
     927             :                  */
     928        2385 :                 bp = pool->freeblock;
     929        2385 :                 pool->freeblock = *(block **)bp;
     930             :                 UNLOCK();
     931        2385 :                 return (void *)bp;
     932             :             }
     933             :             /*
     934             :              * Initialize the pool header, set up the free list to
     935             :              * contain just the second block, and return the first
     936             :              * block.
     937             :              */
     938        6318 :             pool->szidx = size;
     939        6318 :             size = INDEX2SIZE(size);
     940        6318 :             bp = (block *)pool + POOL_OVERHEAD;
     941        6318 :             pool->nextoffset = POOL_OVERHEAD + (size << 1);
     942        6318 :             pool->maxnextoffset = POOL_SIZE - size;
     943        6318 :             pool->freeblock = bp + size;
     944        6318 :             *(block **)(pool->freeblock) = NULL;
     945             :             UNLOCK();
     946        6318 :             return (void *)bp;
     947             :         }
     948             : 
     949             :         /* Carve off a new pool. */
     950             :         assert(usable_arenas->nfreepools > 0);
     951             :         assert(usable_arenas->freepools == NULL);
     952        3836 :         pool = (poolp)usable_arenas->pool_address;
     953             :         assert((block*)pool <= (block*)usable_arenas->address +
     954             :                                ARENA_SIZE - POOL_SIZE);
     955        3836 :         pool->arenaindex = usable_arenas - arenas;
     956             :         assert(&arenas[pool->arenaindex] == usable_arenas);
     957        3836 :         pool->szidx = DUMMY_SIZE_IDX;
     958        3836 :         usable_arenas->pool_address += POOL_SIZE;
     959        3836 :         --usable_arenas->nfreepools;
     960             : 
     961        3836 :         if (usable_arenas->nfreepools == 0) {
     962             :             assert(usable_arenas->nextarena == NULL ||
     963             :                    usable_arenas->nextarena->prevarena ==
     964             :                    usable_arenas);
     965             :             /* Unlink the arena:  it is completely allocated. */
     966          59 :             usable_arenas = usable_arenas->nextarena;
     967          59 :             if (usable_arenas != NULL) {
     968           5 :                 usable_arenas->prevarena = NULL;
     969             :                 assert(usable_arenas->address != 0);
     970             :             }
     971             :         }
     972             : 
     973        3836 :         goto init_pool;
     974             :     }
     975             : 
     976             :     /* The small block allocator ends here. */
     977             : 
     978             : redirect:
     979             :     /* Redirect the original request to the underlying (libc) allocator.
     980             :      * We jump here on bigger requests, on error in the code above (as a
     981             :      * last chance to serve the request) or when the max memory limit
     982             :      * has been reached.
     983             :      */
     984        6868 :     if (nbytes == 0)
     985           0 :         nbytes = 1;
     986        6868 :     return (void *)malloc(nbytes);
     987             : }
     988             : 
     989             : /* free */
     990             : 
     991             : #undef PyObject_Free
     992             : ATTRIBUTE_NO_ADDRESS_SAFETY_ANALYSIS
     993             : void
     994      682464 : PyObject_Free(void *p)
     995             : {
     996             :     poolp pool;
     997             :     block *lastfree;
     998             :     poolp next, prev;
     999             :     uint size;
    1000             : #ifndef Py_USING_MEMORY_DEBUGGER
    1001             :     uint arenaindex_temp;
    1002             : #endif
    1003             : 
    1004      682464 :     if (p == NULL)      /* free(NULL) has no effect */
    1005           0 :         return;
    1006             : 
    1007             : #ifdef WITH_VALGRIND
    1008             :     if (UNLIKELY(running_on_valgrind > 0))
    1009             :         goto redirect;
    1010             : #endif
    1011             : 
    1012      682464 :     pool = POOL_ADDR(p);
    1013      682464 :     if (Py_ADDRESS_IN_RANGE(p, pool)) {
    1014             :         /* We allocated this address. */
    1015             :         LOCK();
    1016             :         /* Link p to the start of the pool's freeblock list.  Since
    1017             :          * the pool had at least the p block outstanding, the pool
    1018             :          * wasn't empty (so it's already in a usedpools[] list, or
    1019             :          * was full and is in no list -- it's not in the freeblocks
    1020             :          * list in any case).
    1021             :          */
    1022             :         assert(pool->ref.count > 0);            /* else it was empty */
    1023      676664 :         *(block **)p = lastfree = pool->freeblock;
    1024      676664 :         pool->freeblock = (block *)p;
    1025      676664 :         if (lastfree) {
    1026             :             struct arena_object* ao;
    1027             :             uint nf;  /* ao->nfreepools */
    1028             : 
    1029             :             /* freeblock wasn't NULL, so the pool wasn't full,
    1030             :              * and the pool is in a usedpools[] list.
    1031             :              */
    1032      653905 :             if (--pool->ref.count != 0) {
    1033             :                 /* pool isn't empty:  leave it in usedpools */
    1034             :                 UNLOCK();
    1035      647633 :                 return;
    1036             :             }
    1037             :             /* Pool is now empty:  unlink from usedpools, and
    1038             :              * link to the front of freepools.  This ensures that
    1039             :              * previously freed pools will be allocated later
    1040             :              * (being not referenced, they are perhaps paged out).
    1041             :              */
    1042        6272 :             next = pool->nextpool;
    1043        6272 :             prev = pool->prevpool;
    1044        6272 :             next->prevpool = prev;
    1045        6272 :             prev->nextpool = next;
    1046             : 
    1047             :             /* Link the pool to freepools.  This is a singly-linked
    1048             :              * list, and pool->prevpool isn't used there.
    1049             :              */
    1050        6272 :             ao = &arenas[pool->arenaindex];
    1051        6272 :             pool->nextpool = ao->freepools;
    1052        6272 :             ao->freepools = pool;
    1053        6272 :             nf = ++ao->nfreepools;
    1054             : 
    1055             :             /* All the rest is arena management.  We just freed
    1056             :              * a pool, and there are 4 cases for arena mgmt:
    1057             :              * 1. If all the pools are free, return the arena to
    1058             :              *    the system free().
    1059             :              * 2. If this is the only free pool in the arena,
    1060             :              *    add the arena back to the `usable_arenas` list.
    1061             :              * 3. If the "next" arena has a smaller count of free
    1062             :              *    pools, we have to "slide this arena right" to
    1063             :              *    restore that usable_arenas is sorted in order of
    1064             :              *    nfreepools.
    1065             :              * 4. Else there's nothing more to do.
    1066             :              */
    1067        6272 :             if (nf == ao->ntotalpools) {
    1068             :                 /* Case 1.  First unlink ao from usable_arenas.
    1069             :                  */
    1070             :                 assert(ao->prevarena == NULL ||
    1071             :                        ao->prevarena->address != 0);
    1072             :                 assert(ao ->nextarena == NULL ||
    1073             :                        ao->nextarena->address != 0);
    1074             : 
    1075             :                 /* Fix the pointer in the prevarena, or the
    1076             :                  * usable_arenas pointer.
    1077             :                  */
    1078          39 :                 if (ao->prevarena == NULL) {
    1079          23 :                     usable_arenas = ao->nextarena;
    1080             :                     assert(usable_arenas == NULL ||
    1081             :                            usable_arenas->address != 0);
    1082             :                 }
    1083             :                 else {
    1084             :                     assert(ao->prevarena->nextarena == ao);
    1085          32 :                     ao->prevarena->nextarena =
    1086          16 :                         ao->nextarena;
    1087             :                 }
    1088             :                 /* Fix the pointer in the nextarena. */
    1089          39 :                 if (ao->nextarena != NULL) {
    1090             :                     assert(ao->nextarena->prevarena == ao);
    1091           6 :                     ao->nextarena->prevarena =
    1092           3 :                         ao->prevarena;
    1093             :                 }
    1094             :                 /* Record that this arena_object slot is
    1095             :                  * available to be reused.
    1096             :                  */
    1097          39 :                 ao->nextarena = unused_arena_objects;
    1098          39 :                 unused_arena_objects = ao;
    1099             : 
    1100             :                 /* Free the entire arena. */
    1101             : #ifdef ARENAS_USE_MMAP
    1102          39 :                 munmap((void *)ao->address, ARENA_SIZE);
    1103             : #else
    1104             :                 free((void *)ao->address);
    1105             : #endif
    1106          39 :                 ao->address = 0;                        /* mark unassociated */
    1107          39 :                 --narenas_currently_allocated;
    1108             : 
    1109             :                 UNLOCK();
    1110          39 :                 return;
    1111             :             }
    1112        6233 :             if (nf == 1) {
    1113             :                 /* Case 2.  Put ao at the head of
    1114             :                  * usable_arenas.  Note that because
    1115             :                  * ao->nfreepools was 0 before, ao isn't
    1116             :                  * currently on the usable_arenas list.
    1117             :                  */
    1118         151 :                 ao->nextarena = usable_arenas;
    1119         151 :                 ao->prevarena = NULL;
    1120         151 :                 if (usable_arenas)
    1121         141 :                     usable_arenas->prevarena = ao;
    1122         151 :                 usable_arenas = ao;
    1123             :                 assert(usable_arenas->address != 0);
    1124             : 
    1125             :                 UNLOCK();
    1126         151 :                 return;
    1127             :             }
    1128             :             /* If this arena is now out of order, we need to keep
    1129             :              * the list sorted.  The list is kept sorted so that
    1130             :              * the "most full" arenas are used first, which allows
    1131             :              * the nearly empty arenas to be completely freed.  In
    1132             :              * a few un-scientific tests, it seems like this
    1133             :              * approach allowed a lot more memory to be freed.
    1134             :              */
    1135        9909 :             if (ao->nextarena == NULL ||
    1136        3827 :                          nf <= ao->nextarena->nfreepools) {
    1137             :                 /* Case 4.  Nothing to do. */
    1138             :                 UNLOCK();
    1139        5943 :                 return;
    1140             :             }
    1141             :             /* Case 3:  We have to move the arena towards the end
    1142             :              * of the list, because it has more free pools than
    1143             :              * the arena to its right.
    1144             :              * First unlink ao from usable_arenas.
    1145             :              */
    1146         139 :             if (ao->prevarena != NULL) {
    1147             :                 /* ao isn't at the head of the list */
    1148             :                 assert(ao->prevarena->nextarena == ao);
    1149         101 :                 ao->prevarena->nextarena = ao->nextarena;
    1150             :             }
    1151             :             else {
    1152             :                 /* ao is at the head of the list */
    1153             :                 assert(usable_arenas == ao);
    1154          38 :                 usable_arenas = ao->nextarena;
    1155             :             }
    1156         139 :             ao->nextarena->prevarena = ao->prevarena;
    1157             : 
    1158             :             /* Locate the new insertion point by iterating over
    1159             :              * the list, using our nextarena pointer.
    1160             :              */
    1161         771 :             while (ao->nextarena != NULL &&
    1162         308 :                             nf > ao->nextarena->nfreepools) {
    1163         185 :                 ao->prevarena = ao->nextarena;
    1164         185 :                 ao->nextarena = ao->nextarena->nextarena;
    1165             :             }
    1166             : 
    1167             :             /* Insert ao at this point. */
    1168             :             assert(ao->nextarena == NULL ||
    1169             :                 ao->prevarena == ao->nextarena->prevarena);
    1170             :             assert(ao->prevarena->nextarena == ao->nextarena);
    1171             : 
    1172         139 :             ao->prevarena->nextarena = ao;
    1173         139 :             if (ao->nextarena != NULL)
    1174         123 :                 ao->nextarena->prevarena = ao;
    1175             : 
    1176             :             /* Verify that the swaps worked. */
    1177             :             assert(ao->nextarena == NULL ||
    1178             :                       nf <= ao->nextarena->nfreepools);
    1179             :             assert(ao->prevarena == NULL ||
    1180             :                       nf > ao->prevarena->nfreepools);
    1181             :             assert(ao->nextarena == NULL ||
    1182             :                 ao->nextarena->prevarena == ao);
    1183             :             assert((usable_arenas == ao &&
    1184             :                 ao->prevarena == NULL) ||
    1185             :                 ao->prevarena->nextarena == ao);
    1186             : 
    1187             :             UNLOCK();
    1188         139 :             return;
    1189             :         }
    1190             :         /* Pool was full, so doesn't currently live in any list:
    1191             :          * link it to the front of the appropriate usedpools[] list.
    1192             :          * This mimics LRU pool usage for new allocations and
    1193             :          * targets optimal filling when several pools contain
    1194             :          * blocks of the same size class.
    1195             :          */
    1196       22759 :         --pool->ref.count;
    1197             :         assert(pool->ref.count > 0);            /* else the pool is empty */
    1198       22759 :         size = pool->szidx;
    1199       22759 :         next = usedpools[size + size];
    1200       22759 :         prev = next->prevpool;
    1201             :         /* insert pool before next:   prev <-> pool <-> next */
    1202       22759 :         pool->nextpool = next;
    1203       22759 :         pool->prevpool = prev;
    1204       22759 :         next->prevpool = pool;
    1205       22759 :         prev->nextpool = pool;
    1206             :         UNLOCK();
    1207       22759 :         return;
    1208             :     }
    1209             : 
    1210             : #ifdef WITH_VALGRIND
    1211             : redirect:
    1212             : #endif
    1213             :     /* We didn't allocate this address. */
    1214        5800 :     free(p);
    1215             : }
    1216             : 
    1217             : /* realloc.  If p is NULL, this acts like malloc(nbytes).  Else if nbytes==0,
    1218             :  * then as the Python docs promise, we do not treat this like free(p), and
    1219             :  * return a non-NULL result.
    1220             :  */
    1221             : 
    1222             : #undef PyObject_Realloc
    1223             : ATTRIBUTE_NO_ADDRESS_SAFETY_ANALYSIS
    1224             : void *
    1225      363321 : PyObject_Realloc(void *p, size_t nbytes)
    1226             : {
    1227             :     void *bp;
    1228             :     poolp pool;
    1229             :     size_t size;
    1230             : #ifndef Py_USING_MEMORY_DEBUGGER
    1231             :     uint arenaindex_temp;
    1232             : #endif
    1233             : 
    1234      363321 :     if (p == NULL)
    1235      308032 :         return PyObject_Malloc(nbytes);
    1236             : 
    1237             :     /*
    1238             :      * Limit ourselves to PY_SSIZE_T_MAX bytes to prevent security holes.
    1239             :      * Most python internals blindly use a signed Py_ssize_t to track
    1240             :      * things without checking for overflows or negatives.
    1241             :      * As size_t is unsigned, checking for nbytes < 0 is not required.
    1242             :      */
    1243       55289 :     if (nbytes > PY_SSIZE_T_MAX)
    1244           0 :         return NULL;
    1245             : 
    1246             : #ifdef WITH_VALGRIND
    1247             :     /* Treat running_on_valgrind == -1 the same as 0 */
    1248             :     if (UNLIKELY(running_on_valgrind > 0))
    1249             :         goto redirect;
    1250             : #endif
    1251             : 
    1252       55289 :     pool = POOL_ADDR(p);
    1253       55289 :     if (Py_ADDRESS_IN_RANGE(p, pool)) {
    1254             :         /* We're in charge of this block */
    1255       54278 :         size = INDEX2SIZE(pool->szidx);
    1256       54278 :         if (nbytes <= size) {
    1257             :             /* The block is staying the same or shrinking.  If
    1258             :              * it's shrinking, there's a tradeoff:  it costs
    1259             :              * cycles to copy the block to a smaller size class,
    1260             :              * but it wastes memory not to copy it.  The
    1261             :              * compromise here is to copy on shrink only if at
    1262             :              * least 25% of size can be shaved off.
    1263             :              */
    1264       10192 :             if (4 * nbytes > 3 * size) {
    1265             :                 /* It's the same,
    1266             :                  * or shrinking and new/old > 3/4.
    1267             :                  */
    1268        6598 :                 return p;
    1269             :             }
    1270        3594 :             size = nbytes;
    1271             :         }
    1272       47680 :         bp = PyObject_Malloc(nbytes);
    1273       47680 :         if (bp != NULL) {
    1274       47680 :             memcpy(bp, p, size);
    1275       47680 :             PyObject_Free(p);
    1276             :         }
    1277       47680 :         return bp;
    1278             :     }
    1279             : #ifdef WITH_VALGRIND
    1280             :  redirect:
    1281             : #endif
    1282             :     /* We're not managing this block.  If nbytes <=
    1283             :      * SMALL_REQUEST_THRESHOLD, it's tempting to try to take over this
    1284             :      * block.  However, if we do, we need to copy the valid data from
    1285             :      * the C-managed block to one of our blocks, and there's no portable
    1286             :      * way to know how much of the memory space starting at p is valid.
    1287             :      * As bug 1185883 pointed out the hard way, it's possible that the
    1288             :      * C-managed block is "at the end" of allocated VM space, so that
    1289             :      * a memory fault can occur if we try to copy nbytes bytes starting
    1290             :      * at p.  Instead we punt:  let C continue to manage this block.
    1291             :      */
    1292        1011 :     if (nbytes)
    1293        1011 :         return realloc(p, nbytes);
    1294             :     /* C doesn't define the result of realloc(p, 0) (it may or may not
    1295             :      * return NULL then), but Python's docs promise that nbytes==0 never
    1296             :      * returns NULL.  We don't pass 0 to realloc(), to avoid that endcase
    1297             :      * to begin with.  Even then, we can't be sure that realloc() won't
    1298             :      * return NULL.
    1299             :      */
    1300           0 :     bp = realloc(p, 1);
    1301           0 :     return bp ? bp : p;
    1302             : }
    1303             : 
    1304             : #else   /* ! WITH_PYMALLOC */
    1305             : 
    1306             : /*==========================================================================*/
    1307             : /* pymalloc not enabled:  Redirect the entry points to malloc.  These will
    1308             :  * only be used by extensions that are compiled with pymalloc enabled. */
    1309             : 
    1310             : void *
    1311             : PyObject_Malloc(size_t n)
    1312             : {
    1313             :     return PyMem_MALLOC(n);
    1314             : }
    1315             : 
    1316             : void *
    1317             : PyObject_Realloc(void *p, size_t n)
    1318             : {
    1319             :     return PyMem_REALLOC(p, n);
    1320             : }
    1321             : 
    1322             : void
    1323             : PyObject_Free(void *p)
    1324             : {
    1325             :     PyMem_FREE(p);
    1326             : }
    1327             : #endif /* WITH_PYMALLOC */
    1328             : 
    1329             : #ifdef PYMALLOC_DEBUG
    1330             : /*==========================================================================*/
    1331             : /* A x-platform debugging allocator.  This doesn't manage memory directly,
    1332             :  * it wraps a real allocator, adding extra debugging info to the memory blocks.
    1333             :  */
    1334             : 
    1335             : /* Special bytes broadcast into debug memory blocks at appropriate times.
    1336             :  * Strings of these are unlikely to be valid addresses, floats, ints or
    1337             :  * 7-bit ASCII.
    1338             :  */
    1339             : #undef CLEANBYTE
    1340             : #undef DEADBYTE
    1341             : #undef FORBIDDENBYTE
    1342             : #define CLEANBYTE      0xCB    /* clean (newly allocated) memory */
    1343             : #define DEADBYTE       0xDB    /* dead (newly freed) memory */
    1344             : #define FORBIDDENBYTE  0xFB    /* untouchable bytes at each end of a block */
    1345             : 
    1346             : /* We tag each block with an API ID in order to tag API violations */
    1347             : #define _PYMALLOC_MEM_ID 'm'   /* the PyMem_Malloc() API */
    1348             : #define _PYMALLOC_OBJ_ID 'o'   /* The PyObject_Malloc() API */
    1349             : 
    1350             : static size_t serialno = 0;     /* incremented on each debug {m,re}alloc */
    1351             : 
    1352             : /* serialno is always incremented via calling this routine.  The point is
    1353             :  * to supply a single place to set a breakpoint.
    1354             :  */
    1355             : static void
    1356             : bumpserialno(void)
    1357             : {
    1358             :     ++serialno;
    1359             : }
    1360             : 
    1361             : #define SST SIZEOF_SIZE_T
    1362             : 
    1363             : /* Read sizeof(size_t) bytes at p as a big-endian size_t. */
    1364             : static size_t
    1365             : read_size_t(const void *p)
    1366             : {
    1367             :     const uchar *q = (const uchar *)p;
    1368             :     size_t result = *q++;
    1369             :     int i;
    1370             : 
    1371             :     for (i = SST; --i > 0; ++q)
    1372             :         result = (result << 8) | *q;
    1373             :     return result;
    1374             : }
    1375             : 
    1376             : /* Write n as a big-endian size_t, MSB at address p, LSB at
    1377             :  * p + sizeof(size_t) - 1.
    1378             :  */
    1379             : static void
    1380             : write_size_t(void *p, size_t n)
    1381             : {
    1382             :     uchar *q = (uchar *)p + SST - 1;
    1383             :     int i;
    1384             : 
    1385             :     for (i = SST; --i >= 0; --q) {
    1386             :         *q = (uchar)(n & 0xff);
    1387             :         n >>= 8;
    1388             :     }
    1389             : }
    1390             : 
    1391             : #ifdef Py_DEBUG
    1392             : /* Is target in the list?  The list is traversed via the nextpool pointers.
    1393             :  * The list may be NULL-terminated, or circular.  Return 1 if target is in
    1394             :  * list, else 0.
    1395             :  */
    1396             : static int
    1397             : pool_is_in_list(const poolp target, poolp list)
    1398             : {
    1399             :     poolp origlist = list;
    1400             :     assert(target != NULL);
    1401             :     if (list == NULL)
    1402             :         return 0;
    1403             :     do {
    1404             :         if (target == list)
    1405             :             return 1;
    1406             :         list = list->nextpool;
    1407             :     } while (list != NULL && list != origlist);
    1408             :     return 0;
    1409             : }
    1410             : 
    1411             : #else
    1412             : #define pool_is_in_list(X, Y) 1
    1413             : 
    1414             : #endif  /* Py_DEBUG */
    1415             : 
    1416             : /* Let S = sizeof(size_t).  The debug malloc asks for 4*S extra bytes and
    1417             :    fills them with useful stuff, here calling the underlying malloc's result p:
    1418             : 
    1419             : p[0: S]
    1420             :     Number of bytes originally asked for.  This is a size_t, big-endian (easier
    1421             :     to read in a memory dump).
    1422             : p[S: 2*S]
    1423             :     Copies of FORBIDDENBYTE.  Used to catch under- writes and reads.
    1424             : p[2*S: 2*S+n]
    1425             :     The requested memory, filled with copies of CLEANBYTE.
    1426             :     Used to catch reference to uninitialized memory.
    1427             :     &p[2*S] is returned.  Note that this is 8-byte aligned if pymalloc
    1428             :     handled the request itself.
    1429             : p[2*S+n: 2*S+n+S]
    1430             :     Copies of FORBIDDENBYTE.  Used to catch over- writes and reads.
    1431             : p[2*S+n+S: 2*S+n+2*S]
    1432             :     A serial number, incremented by 1 on each call to _PyObject_DebugMalloc
    1433             :     and _PyObject_DebugRealloc.
    1434             :     This is a big-endian size_t.
    1435             :     If "bad memory" is detected later, the serial number gives an
    1436             :     excellent way to set a breakpoint on the next run, to capture the
    1437             :     instant at which this block was passed out.
    1438             : */
    1439             : 
    1440             : /* debug replacements for the PyMem_* memory API */
    1441             : void *
    1442             : _PyMem_DebugMalloc(size_t nbytes)
    1443             : {
    1444             :     return _PyObject_DebugMallocApi(_PYMALLOC_MEM_ID, nbytes);
    1445             : }
    1446             : void *
    1447             : _PyMem_DebugRealloc(void *p, size_t nbytes)
    1448             : {
    1449             :     return _PyObject_DebugReallocApi(_PYMALLOC_MEM_ID, p, nbytes);
    1450             : }
    1451             : void
    1452             : _PyMem_DebugFree(void *p)
    1453             : {
    1454             :     _PyObject_DebugFreeApi(_PYMALLOC_MEM_ID, p);
    1455             : }
    1456             : 
    1457             : /* debug replacements for the PyObject_* memory API */
    1458             : void *
    1459             : _PyObject_DebugMalloc(size_t nbytes)
    1460             : {
    1461             :     return _PyObject_DebugMallocApi(_PYMALLOC_OBJ_ID, nbytes);
    1462             : }
    1463             : void *
    1464             : _PyObject_DebugRealloc(void *p, size_t nbytes)
    1465             : {
    1466             :     return _PyObject_DebugReallocApi(_PYMALLOC_OBJ_ID, p, nbytes);
    1467             : }
    1468             : void
    1469             : _PyObject_DebugFree(void *p)
    1470             : {
    1471             :     _PyObject_DebugFreeApi(_PYMALLOC_OBJ_ID, p);
    1472             : }
    1473             : void
    1474             : _PyObject_DebugCheckAddress(const void *p)
    1475             : {
    1476             :     _PyObject_DebugCheckAddressApi(_PYMALLOC_OBJ_ID, p);
    1477             : }
    1478             : 
    1479             : 
    1480             : /* generic debug memory api, with an "id" to identify the API in use */
    1481             : void *
    1482             : _PyObject_DebugMallocApi(char id, size_t nbytes)
    1483             : {
    1484             :     uchar *p;           /* base address of malloc'ed block */
    1485             :     uchar *tail;        /* p + 2*SST + nbytes == pointer to tail pad bytes */
    1486             :     size_t total;       /* nbytes + 4*SST */
    1487             : 
    1488             :     bumpserialno();
    1489             :     total = nbytes + 4*SST;
    1490             :     if (total < nbytes)
    1491             :         /* overflow:  can't represent total as a size_t */
    1492             :         return NULL;
    1493             : 
    1494             :     p = (uchar *)PyObject_Malloc(total);
    1495             :     if (p == NULL)
    1496             :         return NULL;
    1497             : 
    1498             :     /* at p, write size (SST bytes), id (1 byte), pad (SST-1 bytes) */
    1499             :     write_size_t(p, nbytes);
    1500             :     p[SST] = (uchar)id;
    1501             :     memset(p + SST + 1 , FORBIDDENBYTE, SST-1);
    1502             : 
    1503             :     if (nbytes > 0)
    1504             :         memset(p + 2*SST, CLEANBYTE, nbytes);
    1505             : 
    1506             :     /* at tail, write pad (SST bytes) and serialno (SST bytes) */
    1507             :     tail = p + 2*SST + nbytes;
    1508             :     memset(tail, FORBIDDENBYTE, SST);
    1509             :     write_size_t(tail + SST, serialno);
    1510             : 
    1511             :     return p + 2*SST;
    1512             : }
    1513             : 
    1514             : /* The debug free first checks the 2*SST bytes on each end for sanity (in
    1515             :    particular, that the FORBIDDENBYTEs with the api ID are still intact).
    1516             :    Then fills the original bytes with DEADBYTE.
    1517             :    Then calls the underlying free.
    1518             : */
    1519             : void
    1520             : _PyObject_DebugFreeApi(char api, void *p)
    1521             : {
    1522             :     uchar *q = (uchar *)p - 2*SST;  /* address returned from malloc */
    1523             :     size_t nbytes;
    1524             : 
    1525             :     if (p == NULL)
    1526             :         return;
    1527             :     _PyObject_DebugCheckAddressApi(api, p);
    1528             :     nbytes = read_size_t(q);
    1529             :     nbytes += 4*SST;
    1530             :     if (nbytes > 0)
    1531             :         memset(q, DEADBYTE, nbytes);
    1532             :     PyObject_Free(q);
    1533             : }
    1534             : 
    1535             : void *
    1536             : _PyObject_DebugReallocApi(char api, void *p, size_t nbytes)
    1537             : {
    1538             :     uchar *q = (uchar *)p;
    1539             :     uchar *tail;
    1540             :     size_t total;       /* nbytes + 4*SST */
    1541             :     size_t original_nbytes;
    1542             :     int i;
    1543             : 
    1544             :     if (p == NULL)
    1545             :         return _PyObject_DebugMallocApi(api, nbytes);
    1546             : 
    1547             :     _PyObject_DebugCheckAddressApi(api, p);
    1548             :     bumpserialno();
    1549             :     original_nbytes = read_size_t(q - 2*SST);
    1550             :     total = nbytes + 4*SST;
    1551             :     if (total < nbytes)
    1552             :         /* overflow:  can't represent total as a size_t */
    1553             :         return NULL;
    1554             : 
    1555             :     if (nbytes < original_nbytes) {
    1556             :         /* shrinking:  mark old extra memory dead */
    1557             :         memset(q + nbytes, DEADBYTE, original_nbytes - nbytes + 2*SST);
    1558             :     }
    1559             : 
    1560             :     /* Resize and add decorations. We may get a new pointer here, in which
    1561             :      * case we didn't get the chance to mark the old memory with DEADBYTE,
    1562             :      * but we live with that.
    1563             :      */
    1564             :     q = (uchar *)PyObject_Realloc(q - 2*SST, total);
    1565             :     if (q == NULL)
    1566             :         return NULL;
    1567             : 
    1568             :     write_size_t(q, nbytes);
    1569             :     assert(q[SST] == (uchar)api);
    1570             :     for (i = 1; i < SST; ++i)
    1571             :         assert(q[SST + i] == FORBIDDENBYTE);
    1572             :     q += 2*SST;
    1573             :     tail = q + nbytes;
    1574             :     memset(tail, FORBIDDENBYTE, SST);
    1575             :     write_size_t(tail + SST, serialno);
    1576             : 
    1577             :     if (nbytes > original_nbytes) {
    1578             :         /* growing:  mark new extra memory clean */
    1579             :         memset(q + original_nbytes, CLEANBYTE,
    1580             :                nbytes - original_nbytes);
    1581             :     }
    1582             : 
    1583             :     return q;
    1584             : }
    1585             : 
    1586             : /* Check the forbidden bytes on both ends of the memory allocated for p.
    1587             :  * If anything is wrong, print info to stderr via _PyObject_DebugDumpAddress,
    1588             :  * and call Py_FatalError to kill the program.
    1589             :  * The API id, is also checked.
    1590             :  */
    1591             :  void
    1592             : _PyObject_DebugCheckAddressApi(char api, const void *p)
    1593             : {
    1594             :     const uchar *q = (const uchar *)p;
    1595             :     char msgbuf[64];
    1596             :     char *msg;
    1597             :     size_t nbytes;
    1598             :     const uchar *tail;
    1599             :     int i;
    1600             :     char id;
    1601             : 
    1602             :     if (p == NULL) {
    1603             :         msg = "didn't expect a NULL pointer";
    1604             :         goto error;
    1605             :     }
    1606             : 
    1607             :     /* Check the API id */
    1608             :     id = (char)q[-SST];
    1609             :     if (id != api) {
    1610             :         msg = msgbuf;
    1611             :         snprintf(msg, sizeof(msgbuf), "bad ID: Allocated using API '%c', verified using API '%c'", id, api);
    1612             :         msgbuf[sizeof(msgbuf)-1] = 0;
    1613             :         goto error;
    1614             :     }
    1615             : 
    1616             :     /* Check the stuff at the start of p first:  if there's underwrite
    1617             :      * corruption, the number-of-bytes field may be nuts, and checking
    1618             :      * the tail could lead to a segfault then.
    1619             :      */
    1620             :     for (i = SST-1; i >= 1; --i) {
    1621             :         if (*(q-i) != FORBIDDENBYTE) {
    1622             :             msg = "bad leading pad byte";
    1623             :             goto error;
    1624             :         }
    1625             :     }
    1626             : 
    1627             :     nbytes = read_size_t(q - 2*SST);
    1628             :     tail = q + nbytes;
    1629             :     for (i = 0; i < SST; ++i) {
    1630             :         if (tail[i] != FORBIDDENBYTE) {
    1631             :             msg = "bad trailing pad byte";
    1632             :             goto error;
    1633             :         }
    1634             :     }
    1635             : 
    1636             :     return;
    1637             : 
    1638             : error:
    1639             :     _PyObject_DebugDumpAddress(p);
    1640             :     Py_FatalError(msg);
    1641             : }
    1642             : 
    1643             : /* Display info to stderr about the memory block at p. */
    1644             : void
    1645             : _PyObject_DebugDumpAddress(const void *p)
    1646             : {
    1647             :     const uchar *q = (const uchar *)p;
    1648             :     const uchar *tail;
    1649             :     size_t nbytes, serial;
    1650             :     int i;
    1651             :     int ok;
    1652             :     char id;
    1653             : 
    1654             :     fprintf(stderr, "Debug memory block at address p=%p:", p);
    1655             :     if (p == NULL) {
    1656             :         fprintf(stderr, "\n");
    1657             :         return;
    1658             :     }
    1659             :     id = (char)q[-SST];
    1660             :     fprintf(stderr, " API '%c'\n", id);
    1661             : 
    1662             :     nbytes = read_size_t(q - 2*SST);
    1663             :     fprintf(stderr, "    %" PY_FORMAT_SIZE_T "u bytes originally "
    1664             :                     "requested\n", nbytes);
    1665             : 
    1666             :     /* In case this is nuts, check the leading pad bytes first. */
    1667             :     fprintf(stderr, "    The %d pad bytes at p-%d are ", SST-1, SST-1);
    1668             :     ok = 1;
    1669             :     for (i = 1; i <= SST-1; ++i) {
    1670             :         if (*(q-i) != FORBIDDENBYTE) {
    1671             :             ok = 0;
    1672             :             break;
    1673             :         }
    1674             :     }
    1675             :     if (ok)
    1676             :         fputs("FORBIDDENBYTE, as expected.\n", stderr);
    1677             :     else {
    1678             :         fprintf(stderr, "not all FORBIDDENBYTE (0x%02x):\n",
    1679             :             FORBIDDENBYTE);
    1680             :         for (i = SST-1; i >= 1; --i) {
    1681             :             const uchar byte = *(q-i);
    1682             :             fprintf(stderr, "        at p-%d: 0x%02x", i, byte);
    1683             :             if (byte != FORBIDDENBYTE)
    1684             :                 fputs(" *** OUCH", stderr);
    1685             :             fputc('\n', stderr);
    1686             :         }
    1687             : 
    1688             :         fputs("    Because memory is corrupted at the start, the "
    1689             :               "count of bytes requested\n"
    1690             :               "       may be bogus, and checking the trailing pad "
    1691             :               "bytes may segfault.\n", stderr);
    1692             :     }
    1693             : 
    1694             :     tail = q + nbytes;
    1695             :     fprintf(stderr, "    The %d pad bytes at tail=%p are ", SST, tail);
    1696             :     ok = 1;
    1697             :     for (i = 0; i < SST; ++i) {
    1698             :         if (tail[i] != FORBIDDENBYTE) {
    1699             :             ok = 0;
    1700             :             break;
    1701             :         }
    1702             :     }
    1703             :     if (ok)
    1704             :         fputs("FORBIDDENBYTE, as expected.\n", stderr);
    1705             :     else {
    1706             :         fprintf(stderr, "not all FORBIDDENBYTE (0x%02x):\n",
    1707             :                 FORBIDDENBYTE);
    1708             :         for (i = 0; i < SST; ++i) {
    1709             :             const uchar byte = tail[i];
    1710             :             fprintf(stderr, "        at tail+%d: 0x%02x",
    1711             :                     i, byte);
    1712             :             if (byte != FORBIDDENBYTE)
    1713             :                 fputs(" *** OUCH", stderr);
    1714             :             fputc('\n', stderr);
    1715             :         }
    1716             :     }
    1717             : 
    1718             :     serial = read_size_t(tail + SST);
    1719             :     fprintf(stderr, "    The block was made by call #%" PY_FORMAT_SIZE_T
    1720             :                     "u to debug malloc/realloc.\n", serial);
    1721             : 
    1722             :     if (nbytes > 0) {
    1723             :         i = 0;
    1724             :         fputs("    Data at p:", stderr);
    1725             :         /* print up to 8 bytes at the start */
    1726             :         while (q < tail && i < 8) {
    1727             :             fprintf(stderr, " %02x", *q);
    1728             :             ++i;
    1729             :             ++q;
    1730             :         }
    1731             :         /* and up to 8 at the end */
    1732             :         if (q < tail) {
    1733             :             if (tail - q > 8) {
    1734             :                 fputs(" ...", stderr);
    1735             :                 q = tail - 8;
    1736             :             }
    1737             :             while (q < tail) {
    1738             :                 fprintf(stderr, " %02x", *q);
    1739             :                 ++q;
    1740             :             }
    1741             :         }
    1742             :         fputc('\n', stderr);
    1743             :     }
    1744             : }
    1745             : 
    1746             : static size_t
    1747             : printone(const char* msg, size_t value)
    1748             : {
    1749             :     int i, k;
    1750             :     char buf[100];
    1751             :     size_t origvalue = value;
    1752             : 
    1753             :     fputs(msg, stderr);
    1754             :     for (i = (int)strlen(msg); i < 35; ++i)
    1755             :         fputc(' ', stderr);
    1756             :     fputc('=', stderr);
    1757             : 
    1758             :     /* Write the value with commas. */
    1759             :     i = 22;
    1760             :     buf[i--] = '\0';
    1761             :     buf[i--] = '\n';
    1762             :     k = 3;
    1763             :     do {
    1764             :         size_t nextvalue = value / 10;
    1765             :         unsigned int digit = (unsigned int)(value - nextvalue * 10);
    1766             :         value = nextvalue;
    1767             :         buf[i--] = (char)(digit + '0');
    1768             :         --k;
    1769             :         if (k == 0 && value && i >= 0) {
    1770             :             k = 3;
    1771             :             buf[i--] = ',';
    1772             :         }
    1773             :     } while (value && i >= 0);
    1774             : 
    1775             :     while (i >= 0)
    1776             :         buf[i--] = ' ';
    1777             :     fputs(buf, stderr);
    1778             : 
    1779             :     return origvalue;
    1780             : }
    1781             : 
    1782             : /* Print summary info to stderr about the state of pymalloc's structures.
    1783             :  * In Py_DEBUG mode, also perform some expensive internal consistency
    1784             :  * checks.
    1785             :  */
    1786             : void
    1787             : _PyObject_DebugMallocStats(void)
    1788             : {
    1789             :     uint i;
    1790             :     const uint numclasses = SMALL_REQUEST_THRESHOLD >> ALIGNMENT_SHIFT;
    1791             :     /* # of pools, allocated blocks, and free blocks per class index */
    1792             :     size_t numpools[SMALL_REQUEST_THRESHOLD >> ALIGNMENT_SHIFT];
    1793             :     size_t numblocks[SMALL_REQUEST_THRESHOLD >> ALIGNMENT_SHIFT];
    1794             :     size_t numfreeblocks[SMALL_REQUEST_THRESHOLD >> ALIGNMENT_SHIFT];
    1795             :     /* total # of allocated bytes in used and full pools */
    1796             :     size_t allocated_bytes = 0;
    1797             :     /* total # of available bytes in used pools */
    1798             :     size_t available_bytes = 0;
    1799             :     /* # of free pools + pools not yet carved out of current arena */
    1800             :     uint numfreepools = 0;
    1801             :     /* # of bytes for arena alignment padding */
    1802             :     size_t arena_alignment = 0;
    1803             :     /* # of bytes in used and full pools used for pool_headers */
    1804             :     size_t pool_header_bytes = 0;
    1805             :     /* # of bytes in used and full pools wasted due to quantization,
    1806             :      * i.e. the necessarily leftover space at the ends of used and
    1807             :      * full pools.
    1808             :      */
    1809             :     size_t quantization = 0;
    1810             :     /* # of arenas actually allocated. */
    1811             :     size_t narenas = 0;
    1812             :     /* running total -- should equal narenas * ARENA_SIZE */
    1813             :     size_t total;
    1814             :     char buf[128];
    1815             : 
    1816             :     fprintf(stderr, "Small block threshold = %d, in %u size classes.\n",
    1817             :             SMALL_REQUEST_THRESHOLD, numclasses);
    1818             : 
    1819             :     for (i = 0; i < numclasses; ++i)
    1820             :         numpools[i] = numblocks[i] = numfreeblocks[i] = 0;
    1821             : 
    1822             :     /* Because full pools aren't linked to from anything, it's easiest
    1823             :      * to march over all the arenas.  If we're lucky, most of the memory
    1824             :      * will be living in full pools -- would be a shame to miss them.
    1825             :      */
    1826             :     for (i = 0; i < maxarenas; ++i) {
    1827             :         uint j;
    1828             :         uptr base = arenas[i].address;
    1829             : 
    1830             :         /* Skip arenas which are not allocated. */
    1831             :         if (arenas[i].address == (uptr)NULL)
    1832             :             continue;
    1833             :         narenas += 1;
    1834             : 
    1835             :         numfreepools += arenas[i].nfreepools;
    1836             : 
    1837             :         /* round up to pool alignment */
    1838             :         if (base & (uptr)POOL_SIZE_MASK) {
    1839             :             arena_alignment += POOL_SIZE;
    1840             :             base &= ~(uptr)POOL_SIZE_MASK;
    1841             :             base += POOL_SIZE;
    1842             :         }
    1843             : 
    1844             :         /* visit every pool in the arena */
    1845             :         assert(base <= (uptr) arenas[i].pool_address);
    1846             :         for (j = 0;
    1847             :                     base < (uptr) arenas[i].pool_address;
    1848             :                     ++j, base += POOL_SIZE) {
    1849             :             poolp p = (poolp)base;
    1850             :             const uint sz = p->szidx;
    1851             :             uint freeblocks;
    1852             : 
    1853             :             if (p->ref.count == 0) {
    1854             :                 /* currently unused */
    1855             :                 assert(pool_is_in_list(p, arenas[i].freepools));
    1856             :                 continue;
    1857             :             }
    1858             :             ++numpools[sz];
    1859             :             numblocks[sz] += p->ref.count;
    1860             :             freeblocks = NUMBLOCKS(sz) - p->ref.count;
    1861             :             numfreeblocks[sz] += freeblocks;
    1862             : #ifdef Py_DEBUG
    1863             :             if (freeblocks > 0)
    1864             :                 assert(pool_is_in_list(p, usedpools[sz + sz]));
    1865             : #endif
    1866             :         }
    1867             :     }
    1868             :     assert(narenas == narenas_currently_allocated);
    1869             : 
    1870             :     fputc('\n', stderr);
    1871             :     fputs("class   size   num pools   blocks in use  avail blocks\n"
    1872             :           "-----   ----   ---------   -------------  ------------\n",
    1873             :           stderr);
    1874             : 
    1875             :     for (i = 0; i < numclasses; ++i) {
    1876             :         size_t p = numpools[i];
    1877             :         size_t b = numblocks[i];
    1878             :         size_t f = numfreeblocks[i];
    1879             :         uint size = INDEX2SIZE(i);
    1880             :         if (p == 0) {
    1881             :             assert(b == 0 && f == 0);
    1882             :             continue;
    1883             :         }
    1884             :         fprintf(stderr, "%5u %6u "
    1885             :                         "%11" PY_FORMAT_SIZE_T "u "
    1886             :                         "%15" PY_FORMAT_SIZE_T "u "
    1887             :                         "%13" PY_FORMAT_SIZE_T "u\n",
    1888             :                 i, size, p, b, f);
    1889             :         allocated_bytes += b * size;
    1890             :         available_bytes += f * size;
    1891             :         pool_header_bytes += p * POOL_OVERHEAD;
    1892             :         quantization += p * ((POOL_SIZE - POOL_OVERHEAD) % size);
    1893             :     }
    1894             :     fputc('\n', stderr);
    1895             :     (void)printone("# times object malloc called", serialno);
    1896             : 
    1897             :     (void)printone("# arenas allocated total", ntimes_arena_allocated);
    1898             :     (void)printone("# arenas reclaimed", ntimes_arena_allocated - narenas);
    1899             :     (void)printone("# arenas highwater mark", narenas_highwater);
    1900             :     (void)printone("# arenas allocated current", narenas);
    1901             : 
    1902             :     PyOS_snprintf(buf, sizeof(buf),
    1903             :         "%" PY_FORMAT_SIZE_T "u arenas * %d bytes/arena",
    1904             :         narenas, ARENA_SIZE);
    1905             :     (void)printone(buf, narenas * ARENA_SIZE);
    1906             : 
    1907             :     fputc('\n', stderr);
    1908             : 
    1909             :     total = printone("# bytes in allocated blocks", allocated_bytes);
    1910             :     total += printone("# bytes in available blocks", available_bytes);
    1911             : 
    1912             :     PyOS_snprintf(buf, sizeof(buf),
    1913             :         "%u unused pools * %d bytes", numfreepools, POOL_SIZE);
    1914             :     total += printone(buf, (size_t)numfreepools * POOL_SIZE);
    1915             : 
    1916             :     total += printone("# bytes lost to pool headers", pool_header_bytes);
    1917             :     total += printone("# bytes lost to quantization", quantization);
    1918             :     total += printone("# bytes lost to arena alignment", arena_alignment);
    1919             :     (void)printone("Total", total);
    1920             : }
    1921             : 
    1922             : #endif  /* PYMALLOC_DEBUG */
    1923             : 
    1924             : #ifdef Py_USING_MEMORY_DEBUGGER
    1925             : /* Make this function last so gcc won't inline it since the definition is
    1926             :  * after the reference.
    1927             :  */
    1928             : int
    1929             : Py_ADDRESS_IN_RANGE(void *P, poolp pool)
    1930             : {
    1931             :     uint arenaindex_temp = pool->arenaindex;
    1932             : 
    1933             :     return arenaindex_temp < maxarenas &&
    1934             :            (uptr)P - arenas[arenaindex_temp].address < (uptr)ARENA_SIZE &&
    1935             :            arenas[arenaindex_temp].address != 0;
    1936             : }
    1937             : #endif

Generated by: LCOV version 1.10